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Executive Summary 
 
As more recent fire outbreaks have become infamous for their magnitude and ferocity, research 

into fire-risk modelling has garnered the attention of both researchers and government officials. 

Researchers have worked to develop fire-risk prediction tools, forecasting models, and analytic 

approaches to help lessen their negative impact on our communities and environment. For 

example, the Edmonton River valley, which flows straight through the City, is one of North 

America’s largest urban parkland. It garners a lot of usage by the locals and outside visitors but 

leads to the potential danger of human-caused fires that could rage out of control because of 

elevated temperatures and reduced precipitation levels. When combined with the river valley’s 

proximity to both residential and commercial districts, the need for fire-risk modeling and a robust 

emergency management plan is critical to ensuring Edmonton is a climate resilient region. As a 

result, it is critical to provide an accurate understanding of the green spaces as well as which areas 

pose the greatest risk of fire depending on the ignition sources in that area. City officials may use 

this information to create an appropriate emergency response and evacuation plan that provides 

information about transit services and their accessibility. 

To accomplish these goals, this report has three main tasks with the first being the 

development of a fire risk assessment model. It is important to remember that urban risk models 

differ greatly from rural risk models when using modelling methodologies. The fire behaviour, the 

risk to human life, the risk to valuable objects, and other complicating factors differ dramatically 

between the two situations. As a result, it is critical to decide which risk model will be investigated, 

as this will influence the parameters used and the modelling methodologies used. While there are 

some parallels in how danger is assessed in both contexts, the most significant variations are in 

how fire spreads, propagates, and is assessed. Hence, it is critical to define the project's scope, 

which will focus on developing a framework for modelling wildfire risk. The report will begin 

with a thorough review of literature and background information for fire risk modeling and of past 

research efforts. Using data centered on the City of Edmonton (CoE), the fire risk assessment 

model development will include information about anthropogenic, biologic, topographic, and 

climatic features to be able to determine areas with a high risk of wildfire. This is combined with 

data obtained from satellite and aerial LiDAR photographs of the landscape, which will be layered 
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and mapped using advanced tools such as ArcGIS and Python scripting language. To develop the 

fire risk-model with the obtained state-of-the-art datasets, 4 different criteria with 12 critical 

variables that match the urban context and surroundings of the CoE were chosen with respect to 

the literature, as shown in Figure 0-1. Obtaining high-resolution information and rigorous data 

analysis are the building blocks for generating the fire-risk model, which ends up providing a high-

resolution fire risk map. Fire risk assessment maps are subsequently generated by combining all 

the acquired datasets using the analytical hierarchy process (AHP) technique in weight assignment 

to build the fire risk model, which is then used to precisely determine the highest fire-risk zones 

within Edmonton. It is worth noting that the proposed model does not include risk quantification 

or probability generation. It is, however, based on the AHP multi-criteria methodology that is 

heavily reliant on the judgement matrix, which is influenced by the opinions and beliefs of city 

subject matter experts and decision-makers, resulting in an efficient multi-criteria decision analysis 

(MCDA). Results show that the northeast and southwest areas are at high risk of wildfires due to 

their high vegetation levels with prominent human activities. The river valley also showed an 

increased risk due to steep slopes and a high concentration of highly flammable trees. 

 

Figure 0-1 Summary of criteria and factors influencing wildland fire 
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Secondly, the intensity and frequency of fires are influenced by climate. As a result, major 

municipalities would benefit from having a comprehensive and detailed database. This report will 

explore the forecasting of wildland fire risk for 2050 and 2080 given the climatic IPCC RCP4.5 

and RCP8.5 datasets combined with other available datasets. This will give the City officials and 

authorities a better understanding of the forecasted climate change by integrating a multitude of 

data sources including temperatures, precipitation, wind speed, and humidity levels that have a 

huge impact on the resiliency of the City of Edmonton. These analytical findings would provide 

city officials with the comprehensive details they need to create an emergency response and 

evacuation plan by ensuring the City’s readiness with an unchecked wildfire in Edmonton’s natural 

areas given respective future climate change scenarios. Conservatively, results indicate that from 

2021 to 2050, the fire risk can increase by almost 20%. Furthermore, the risk will increase by 

another 11% from 2050 to 2080, as shown in Figure 0-2. 

 
Figure 0-2 The wildfire risk in relation to climate projections for the CoE. 

 

Finally, a comprehensive discussion follows that illustrates all the findings of the fire risk 

maps, current and forecasted, by which high risk areas were identified and highlighted. The output 

map of the fire risk assessment model was a map that depicts all of the City of Edmonton's risk 

areas, which was divided into five categories ranging from very low to very high, as depicted in 

Figure 0-3(a). The very high-risk locations were designated as priority locations for fire-risk 

management, and city officials and decision-makers should focus on implementing a fire-risk 
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mitigation and preventive strategy in these regions. To provide the City officials with more 

information and data to support their decision-making process, an ecological vulnerability 

classification map was constructed for the City of Edmonton. The ecological vulnerability 

classification further classified the five fire-risk categories into three ecological categories, green, 

grey and red line areas, to identify the areas which are ecologically conserved or expandable in the 

municipality, as shown in Figure 0-3(b). Combining the fire-risk assessment raster map with the 

vulnerability categorization raster map, according to the literature, will provide a more in-depth 

and better knowledge of the resolution of high-risk locations. Subsequently, fire-risk management 

prioritises understanding responsibilities and sharing essential actions across stakeholders. Every 

stakeholder must have a solid knowledge of what they need and how it would be fulfilled. The 

government and homeowners share some obligations in fire-risk mitigation and prevention in order 

to obtain an ideal level of fire-risk mitigation and prevention. As a result, it was critical to define 

and clarify these obligations in terms of the literature in high-risk areas/zones.  

Ultimately, this research will serve as a foundation for a climate-resilient city, allowing for 

greater fire mitigation as well as the prevention of losses. As a result, this research has focused on 

four key cornerstones that, if implemented, would help the City achieve greater climate resiliency. 

This is not a comprehensive guide on climate resiliency, but it can assist with evacuation responses 

and emergency preparedness decisions. 

 
                                                     (a)                                            (b) 

Figure 0-3 (a) The fire-risk map for 2021, and (b) The ecological lines of City of Edmonton 



 

5 
 

1. Introduction 

1.1. Background and Motivation 

In recent years, municipalities in Canada have been expanding their limits. As cities grow bigger, 

so does their wildland-urban interface (WUI), which increases their risk of wildfires potentially 

encroaching upon and/or entering urban centers. Given the vast wilderness and expansive rural 

areas across the country, Canada has its fair share of wildfires (or wildland fires) occurring 

annually, which results in millions of hectares of burned areas and thousands of people requiring 

evacuation (Coops et al. 2018; Hanes et al. 2019).  

Figure 1-1 depicts every wildland fire occurrence in Canada between 1980 and 2018. 

Wildfire events are one of the costliest natural hazards in Canada, especially after Alberta’s 2016 

Fort McMurray wildfire. This particular incident resulted in approximately $3.8 billion in insured 

losses—the highest-ever loss for a single year (Insurance Bureau of Canada 2020). Due to rapid 

climate changes, it is likely that wildfires will not only continue to occur, but more frequent and 

burn longer (Kives 2019; Climate Atlas 2020). A recent study forecasted that Western Canada is 

expected to experience a 50% increase in the number of dry, windy days, which will likely 

contribute to widespread fires in the region (Wang, 2017). 

 
Figure 1-1: All wildland fire occurrences in Canada between 1980 and 2018 (adopted from the 

Canadian National Fire Database, CNFDB) 
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The City of Edmonton (CoE) is known for being one of North America’s greenest cities 

due to having the longest connected stretch of urban parkland while also being the northernmost 

metropolis with a population of at least 1 million residents (CALDO 2020). Although these 

parklands are a sight to behold, they also come with increased risk for wildfire events. This is why 

the protection and preservation of Edmonton’s green spaces and neighboring urban infrastructure 

have recently become a significant concern for the City. Since wildfire is not an issue unique to 

Edmonton, many other cities around the globe have developed frameworks to manage wildfires, 

some of which include Mount Wuyi in China (You, 2017), Urbión in Spain (González-Olabarria, 

2012), Provence-Alpes-Côte d’Azur in France (Varela, 2019), Espírito Santo State in Brazil 

(Eugenio, 2016), Vikos-Aoos parks in Greece (Petrakis, 2005), Apulian region in South Italy 

(Semerato et al., 2016), and Trieste in northeast Italy (Poldini et al., 2018). However, there exists 

a significant gap in knowledge in developing a unified yet transferrable methodological framework 

that can identify high-risk zones in urban metropolitan areas. 

1.2. Problem Statement 

The environment, both natural and anthropogenic, has a significant effect on the behavior of fires 

as they burn and spread. Climate change effects must also be accounted for, as changes in factors 

such as higher winds, more prolonged droughts, and rising temperatures (Linder, 2010) would 

affect fire intensity, frequency, and movement. Hence, it is in the best interest of any municipality 

to have a comprehensive and detailed database including, but not limited to, vegetation, 

topography, climate, land use, roads, zoning, and population statistics.  

 Wildland fires are naturally occurring ecological and abiotic event that behaves as though 

it were alive with its features being dictated by the surrounding ecosystem. It is a globally 

important process that significantly and dynamically affects the ecosystems and many species have 

developed a response around it (Pausas, 2019). Lightning is the primary natural cause for many 

wildfires, but increasingly forest fires have become the result of anthropogenic activities. 

Typically, the anthropogenic causes can be classified into three main categories: (1) culpably or 

carelessness; (2) arson or the intentional act of starting a fire; and (3) unknown or unlinkable causes 

(Syphard, 2014). Given the growing risk of forest fires within Canada, a surge of research into 

wildfire prevention/reduction methods have been observed such as land use planning that creates 

buffer areas (or defensible spaces) next to fire-prone areas (Syphard, 2014). In order to develop 
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the proper preventative measures and to maximize its impact, it is of paramount importance to 

identify high fire-risk locations that require intervention.  

A detailed evaluation of the countermeasures implemented and their effect on reducing the 

risk of complications with forest fires is best supported with an accurate fire risk map (Syphard, 

2014). To develop effective and efficient fire prevention strategies or evacuation plans, the spatial 

distribution of high fire-risk zones needs to be mapped and presented to planners (Jung, 2013). 

The availability of such datasets will allow city planners and engineers to develop plans and 

policies for zoning, evacuation, emergency responses, and firefighting. Wildfire indicators may be 

grouped into three categories, namely, spatial, temporal, and human (Eskandari, 2017; Tien Bui, 

2018; Hong, 2019; Kumari, 2020), as depicted in Figure 1-2. 

Catastrophic losses owing to increased incidences of extreme climate trends and 

occurrences are on the upswing. In North America, increased climate risk is noticeable. Swiss Re, 

one of the world's largest reinsurance, insurance, and other insurance-based risk transfer 

companies, reports that 74% of global weather losses and 94% of global assurance weather losses 

took place in North America in 2012. The U.S. insured losses were 91% connected with extreme 

weather, including Hurricane Sandy and the severe drought in the Midwest (Bevere, 2013). Future 

losses will place further tension on the already-strained US and Canadian public finances, 

particularly if they occur in places with significant property and business value, such as major 

municipalities.  

 

 

 

Figure 1-2 Summary of the three common wildland fire indicators 
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Based on the increasing frequency of extreme climate events observed, there are two paths 

forward for government agencies. Do nothing and continue to risk their investments, or 

alternatively, they can develop innovative mitigation strategy for at-risk areas to strengthen their 

resilience to climate events and preserve or even enhance insurability in those places (Brugmann, 

2012). Shedding light on one of the highest-growing Canadian municipalities, Edmonton currently 

faces the tough decision of which path to follow. Edmonton has warmed up at one of the quickest 

rates of any city on the planet over the last 50 years. While Edmonton has only had one day each 

year above +30 degrees Celsius in the past, this might increase to more than 15 days by the 2040s, 

and more than 33 days by the 2070s. Edmonton may also see unprecedented temperature highs 

that have never been observed before (Martin, 2012; Roszko, 2020). Based on all these factors, it 

is therefore critical to consider fire risk management in the context of climate resiliency. 

1.3. Research Objectives 

Highlighting the importance of modeling fire risk hazards for major municipalities, the primary 

research question that will be addressed is:  

“What are the data requirements for developing a fire-risk model capable of capturing both 

current and forecasted variable dynamics in order to aid city authorities in setting appropriate 

emergency planning and response, such that any municipality can improve its climate resiliency 

and is prepared in the event of any wildland fire?” 

This report looks to answer the above question via three objectives: 

1. Provide an extensive literature review of past efforts on the topic of wildland fire risk modeling. 

The information collected and presented comes from a myriad of sources, most of which are 

from scientific publications that provide an extensive and solid background into wildfire 

modeling and risk assessment. 

2. Develop a wildfire risk map using a multitude of data collected from various sources to identify 

the City’s highest fire-risk areas. These data sources include aerial LiDAR images, satellite 

images, urban Primary Land Vegetation Index (uPLVI), and climatic RCP4.5 and RCP8.5 

datasets. 

3. Identify operational actions municipalities can take to adapt their proposed zoning and building 

regulations in accordance with how wildfire risk has increased due to climate change. 
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This report uses ArcGIS, which is one of the most widely used geographic information 

systems (GIS) software, to integrate multiple datasets and map their outcomes. Additionally, a 

weight assignment method; namely, the analytic hierarchy process (AHP) is introduced where 

factor weights are assigned to 12 variables, which contribute to fire ignition and triggering. The 

AHP was chosen for its ability to overcome the subjectivity problem in weight assignment (Busico, 

2019). Furthermore, a brief discussion on the role of climate change and the future of fire-risk 

modeling is provided. Concepts into fire-risk management in policies, zoning, and building 

regulations are briefly introduced, as well as addressing fire-risk management from the perspective 

of climate resiliency.  

This report, therefore, serves as a building block for future research on improving 

evacuation plans and emergency responses in the event of a fire outbreak. In the case of emergency 

planning, it allows city planners to simulate, plan, and handle concurrent transportation concerns. 

Some of these concerns include the necessity for urban evacuations, a pre-disaster strategy, and a 

risk assessment of transportation infrastructure and road networks. Ultimately, this research will 

facilitate the development of plans that can improve a city’s climate resiliency and enhance citizen 

preparedness (i.e., mobility) in the case of a citywide wildfire. 

1.4. Report Outline 

This report is divided into five sections that cover all the aforementioned objectives. Section 2 

presents an extensive literature review aimed at identifying and exploring the variables that affect 

fire risks; look at fire-risk models with fire-risk definition and their associated unit of analysis; 

compare urban and rural fire models; present fire-risk management and policies, as well as zoning 

and building regulations due to fire risk; and, finally, investigate the impact of climate change on 

fire risk. Section 3 describes the datasets used, their sources, and preprocessing requirements. 

Section 4 provides the methodological framework used for building the fire-risk assessment model 

by going through the data and feature engineering process upon all the data sources, e.g., how the 

factors and variables were extracted from each dataset, an overview of the analytical hierarchy 

process and weight assignment, followed by an analysis of the fire-risk model, and, finally, the 

climate predictions and forecasting interpolation. Section 5 presents the results obtained from the 

fire-risk modelling and highlights the discussion regarding the output such as classifying the 

vulnerable areas, identifying the responsibility of fire-risk mitigation, and proposing fire-risk 
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management cornerstones to climate resiliency. Finally, Section 6 concludes the entire report and 

provides future recommendations. 
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2. Literature Review 

2.1. Factors Affecting Fire Risk  

Wildfire risk modeling highly depends on a selection of factors and variables, which makes it one 

of the most critical steps. As introduced earlier in Figure 1-2, the three indicators can be further 

divided into four sub-criteria, which are climatic, biologic, topographic, and anthropogenic. Each 

of these criteria has been shown to influence and contribute to the fire season, likelihood, 

frequency, intensity, severity, and extent of a wildfire. Climate and environmental criteria of 

wildland forest regions control the nature of the fire regimes (Gedalof, 2011). On the other hand, 

the biologic criterion will dictate the spread and intensity of fires in progress, since they include 

factors such as vegetation type and density, leaf litter depth and moisture, and soil characteristics 

(Eskandari, 2017). This section summarizes the variables used in wildland fire modeling, as shown 

in Figure 2-1.  
 

 

Figure 2-1 Summary of criteria and factors influencing wildland fire 
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2.1.1. Climate Conditions 

Climate plays an essential role in the life cycle of wildfires. Climate patterns such as temperature, 

relative humidity, and wind speed are correlated with the chance of a fire occurring as it has been 

found that hot, windy, and dry conditions result in a higher likelihood for a fire to ignite (Scott, 

2013; Chang, 2013; Thach, 2018; Tien Bui, 2018; Hong, 2019; Kumari, 2020). Precipitation has 

been another critical factor of interest due to its being a significant contributor to increasing the 

risk of forest fire (Eskandari, 2015). Often, precipitation is high in winter but then it significantly 

drops in spring and summer, leading to dry conditions (Jaafari, 2018).  

2.1.2. Biologic Factors 

Biologic factors strongly influence the potential for ignition and propagation of wildland fires, 

including the rate of spread, size, and severity. Vegetation is the primary fuel source for wildland 

fires and, thus, can be considered the most crucial variable in this criterion, which can be 

represented by vegetation type and density, leaf litter depth, and moisture and soil characteristics 

(Eskandari, 2017; Bright, 2017; Hong, 2019; Jaafari, 2019; Jaafari 2019a). Previous studies 

showed that LiDAR data could capture structural information related to quantitative canopy fuel 

characteristics (Scott, 2013; Kelly, 2015; Yavari, 2018). The Normalized Differential Vegetation 

Index (NDVI) is not only an important variable that represents the biologic criterion, but it has 

also been proven to be the most dominant factor, which can solely determine the biological 

criterion where a wildfire has occurred (Tien, 2018; Thach, 2018; Hong, 2019). 

2.1.3. Topographical Factors 

Topographical features may also influence the potential for ignition and propagation of wildfires. 

Examples of these factors include elevation, slope, and aspect which were predictors for wildfire 

occurrences in many studies (Scott, 2013; Kelly, 2015; Wang, 2017; Thach, 2018; Hong, 2019; 

Jaafari, 2019). Slope controls the rate of spread—the steeper the slope, the faster the fire 

propagates (Zhou, 2007). Aspect, or exposure direction, influences the moisture that relates to fire 

behavior. Elevation influences solar radiation, temperature, and evapotranspiration of the terrain 

which are indirectly related to forest fires (Camp, 1997). Another topographical feature that affects 

wildfire propagation is the local curvature of fire. This can be described as the boundary or 

perimeter line that represents the interface between burnt and unburnt regions and has been proven 



 

13 
 

to be an essential factor as previous studies have found that the lower the curvature, the higher the 

rate of fire spread (Hilton, 2017; Thach, 2018).  

2.1.4. Anthropogenic Factors 

The last factor affecting fire spread and occurrences is an anthropogenic factor, i.e., human 

indicator. This factor represents the potential for fire ignition and ramification (Thach, 2018). A 

highly visible example of anthropogenic influences on wildfires is electrical infrastructures. Ma et 

al. (2020) showed that most fires caused by power infrastructures were often outside the control 

of the utility company, where a system or piece of equipment fails when overstressed beyond 

design limits because of adverse conditions. Additionally, unintended vegetation contact and 

ignition with the power lines are rare, but may cause fires should the conditions be right, and often 

involve tall vegetation that has not been cut back to maintain a safe vegetation clearance zone as 

per industry best practices. With this in mind, any risk preparedness plan must, therefore, include 

electrical utility companies, especially if they have exposed infrastructure, but is beyond the scope 

of this report. 

The main variables to be considered in this criterion are distances or proximities to roads, 

and types of land use (Thach, 2018; Tien Bui, 2018; Hong, 2019; Jaafari 2019). Other variables 

that displayed some influence over the extent of fire spread, such as distances from settlements or 

farmlands were also introduced (Ward, 2017). The distances from rivers were also used as it has 

been shown to affect the extent of fire spread (Wang, 2017). 

2.2. Fire-Risk Models 

Fire-risk models can be divided into four main analytical categories: spatial, nonspatial, 

parametric, and nonparametric models. In this section, the methods will be thoroughly discussed 

to provide clear differentiation between each of them and to identify which method has shown to 

provide the best resolution and greatest accuracy for fire-risk modeling. 

 

2.2.1. Non-Spatial Models 

Non-spatial models are used to attribute the effects of independent variables to a dependant 

variable considering no spatial aspect of the variables. This means that the locations or spatial 

separations of the data points are not considered as contributing factors in the modeling process. 
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The non-spatial models, therefore, rely solely upon measurable or recordable variables without 

considering their locational attributes. 

One of the most widely used non-spatial fire-risk modeling techniques is the Analytic 

Hierarchy Process (AHP). The AHP method is a combination of qualitative and quantitative, 

systematic, and hierarchical analyses (Saaty, 1977). Its simplicity and transparency are advantages 

that characterize AHP; however, its primary advantage is the hierarchical framework which allows 

research users to consider and measure the relative importance of the indicators. AHP was 

implemented by Zhang (2013) to establish a fire-risk assessment system, which included three 

hierarchies of indicators: three first-level indicators (i.e., risk of urban fire, urban vulnerability, 

and urban anti-fire capability), 13 second-level indicators (i.e., risk of fire accidents in the past, 

potential fire risk, meteorological factors, features of the City, evacuation protocols, the safety of 

buildings, etc.), and 48 third-level indicators (i.e., number of fires per  10  thousand persons, fire 

deaths per 10 thousand persons, relative humidity, rainfall, wind speed, population density, etc.). 

The Gray Correlation Degree method gives equal weight to each evaluation indicator so as to 

enable researchers to select these indicators objectively. This was also applied to set up the weights 

coefficient and quantify the indicators (Zhang, 2013). The major limitation of this study was the 

lack of visualization power of the risk levels in the model. The association of uncertainty and 

subjectivity to all available information is another limitation, which requires a researcher with 

extensive experience in wildfire risk modeling. 

Another nonspatial fire study used two simulation methods, the Canadian Fire Behavior 

Prediction (FBP) and the U.S. BEHAVE systems. The Canadian FBP is an empirical model 

developed based on wildfire and prescribed burning data, which is then used to determine the 

behavior of surface and crown fires. The U.S. BEHAVE system is a deterministic model based on 

the properties of fuels studied in laboratories rather than from field data and is used to determine 

the behavior of surface fire. This model is deemed to have more realistic predictions as it is based 

on fuel loading rather than fuel type. A relevant study by Hély (2001) concluded that the BEHAVE 

system was not suited to predict realistic quantitative fire behavior. In contrast, the FBP system 

was deemed to be an efficient fire behavior prediction system for the boreal ecosystem. 
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2.2.2. Spatial Models 

Spatial models consider the spatial aspect of the data as a possible influential variable that can 

affect the outcome of the model. Such models are constructed under a reasonable assumption that 

the location of the data points, as well as the separation distance between these points are factors 

in themselves. Data that have an inherent correlation with themselves based on the distance 

between data points are said to be auto-correlated, where this distance factor can interpolate or 

predict values at unmeasured locations using the surrounding measured data. 

There are several studies for wildland fire-risk modeling using spatial models. The essential 

component of the modeling framework is the geospatial analysis and an important initial step to 

define a consistent geospatial definition for the data. Key factors influencing the success of 

wildland fire-risk assessment efforts are the level of resources committed as well as the sufficiency 

and availability of scale-appropriate geospatial data (Scott, 2013). For instance, FARSITE (Fire 

Area Simulator) is a tool that can describe and simulate, with the support of the Geospatial 

Information Systems (GIS), temporal and spatial differences of fire behavior and spread 

(Rothermel, 1972). FARSITE simulation can determine fire spread, fire intensity, as well as fuel 

consumption rate for different seasons (Kanga, 2014). 

GIS can be integrated with a fuzzy AHP in a decision-making algorithm that can model 

wildland fire areas and identify their associated risk factor. Hence, the model was constructed in 

two phases. First, analyzing the importance of the major criteria in wildland fire risk, hence, 

obtaining the fuzzy weights for each criterion. Second, the spatial data of the 17 sub-criteria were 

provided and organized in GIS to obtain the sub-criteria maps. Each sub-criterion map was 

converted to a raster format, where it was reclassified based on the associated risk of its classes for 

the potential for a fire occurrence. Then, all sub-criteria maps were converted to a fuzzy format 

using a fuzzy membership function in GIS. The fuzzy map of fire occurrence risk was obtained by 

overlaying all the major criteria fuzzy maps (Eskandari, 2017). The obtained fuzzy map of each 

major criterion also had a fuzzy format with a range of values from 0 to 1. The findings suggested 

that the fuzzy AHP had a high predictive capability for wildland fire detection and prediction for 

the Hyrcanian forest in Iran. Another recent research by Nuthammachot (2019) concluded that 

research should continue to investigate the potential of the AHP technique in this domain as very 

few studies combined AHP with GIS for fire risk assessment. 
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With interpreting Landsat 8 satellite images in ArcGIS, vegetation types with a radiant heat 

flux can be the reference source of ignition in a wildland fire. This method can determine forest 

fire danger caused by anthropogenic factors and thunderstorm activities (Yankovich, 2019). For 

instance, the classification of forest vegetation was effectively computed and estimated using the 

Sentinel 2 images. The estimated accuracy was 77% for vegetation classification (Kupková, 2017). 

One of the major limitations in using only satellite images is that they can only provide information 

on the terrain, texture, and radiation. 

By combining LiDAR data and spatial analysis, one study used simple measurements about 

the canopy height as well as canopy cover and area to study the complex process of how a forest 

would restructure itself depending on fire severity (Kane, 2014). The proposed approach focused 

on tree clumps and openings, which were found to contribute to fire spread in dry forests. Two 

limitations were introduced when using discrete LiDAR data. First, the limitation on pre-fire 

structural measurements; smaller trees and understory are difficult to map reliably because of the 

underestimation in the density of trees less than 65 feet (20 meters) tall (Kelly, 2015). Second, the 

accuracy of the estimated fire risk and severity was also limited. In other words, gaining highly 

accurate LiDAR data, if available, is costly. Therefore, the data collected using low accuracy 

LiDAR scanners were limited in their ability to reflect the actual factors and criteria values. 

The fusion of LiDAR and aerial satellite imagery datasets has shown dramatic 

improvement in the accuracy in measuring canopy height and biomass, as well as aiding in tree 

crown identification, tree species identification, and surface fuel mapping (Erdody, 2010). By 

merging satellite images with LiDAR data, the accuracy of vegetation classification increased by 

88% (Sánchez, 2018). Integrating satellite imagery with LiDAR data leads to a huge amount of 

information that can be gathered with greater accuracy for the identification of vegetation type and 

height (Gopalakrishnan, 2015). Taheriazad (2018) conducted fire-risk modeling for the CoE’s 

Parkland natural area using airborne LiDAR, satellite images, and urban Primary Land and 

Vegetation Inventory (uPLVI) datasets by layering polygons in different layers in GIS and 

calculating an associated score. These scores were compared to certain thresholds to be classified 

accordingly to a certain risk category. From these studies, it can be shown that combining both 

LiDAR and satellite datasets can improve both the accuracy and precision of the mapping results 

from spatial modeling. 
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2.2.3. Parametric Models 

In statistics, a parametric model is a class of statistical models where a family of probability 

distributions has a finite number of parameters. Using parametric models in wildfire risk modeling 

has shown very promising prediction and analysis results.  

Logistic regression, one of the most well-known statistical regression models, is more 

commonly used to map wildfire ignition probability over a vast spatial scale, as compared to some 

nonparametric algorithms, such as weights-of-evidence, classification and regression tree (CART), 

and random forests (RF) (Vasconcelos, 2001; Taylor, 2005; Chang, 2013; Satir, 2016). This is 

because of its reasonability and flexibility in accepting a mixture of continuous and categorical 

variables, as well as non-normally distributed variables (Bisquert, 2012; Chang, 2013). Logistic 

regression was determined to be more successful than nonparametric multi-layer perception (MLP) 

algorithms (Catry, 2009; Satir, 2016). 

A more recent study used logistic regression in combination with GIS to predict the 

wildland fire occurrence in a grid of 1x1km cell, using the set of explanatory variables from Shanxi 

Province in China. The developed model could predict wildland fire occurrences and zones 

accurately, and thus may provide a scientific basis for fire prevention and mitigation, and 

emergency evacuation (Pan, 2016). As a continuation, another model was developed in a separate 

study using logistic regression at the 1km grid resolution as a basic unit of analysis. This model 

was implemented to develop a future fire prediction model to allocate fire management resources 

efficiently to potential fire zones, of which they could do so with a high level of accuracy (Guo, 

2017). 

In another study by Guo (2016), logistic regression was compared to geographically 

weighted logistic regression (GWLR), an expansion of the standard logistic regression where it 

incorporates geographical location data, thus including a spatial aspect to the regression model. 

The GWLR modeling depends on the weighting function determination for estimating the local 

parameters. Upon comparing the results between the two regression methods on a spatial 1x1km 

grid, the author found GWLR had more insights into the parameters weight assignment and 

provided better predictions for wildland fire occurrences.  

In another comparison study, logistic regression, and artificial neural networks (ANNs) 

were compared. ANN is a sophisticated network of individual learning units called neurons that 

are combined into different layers to learn and generalize complex relationships from their input 



 

18 
 

variables. These two different modeling techniques were used to predict the fire occurrence in a 1 

km square grid. The results showed that even though ANN and logistic regression are quite 

different, as the former is nonparametric while the latter is parametric, both models performed 

similarly to each other in terms of their fire occurrence prediction (de Bem, 2019). 

A wildland fire-risk occurrence predictor was developed using logistic regression that also 

showed promising results in accurately predicting fire occurrences. The model’s unit of analysis 

was a one-kilometer square pixel. The model developed for the Niassa reserve in Mozambique 

could predict fire occurrence efficiently, and the accuracy of the model was further validated by 

referencing different logistic regression models, which were all showing high accuracy in fire 

occurrence prediction (Nhongo, 2019). 

 

2.2.4. Non-Parametric Models 

Wildland fires can also be estimated using non-parametric modeling techniques where the major 

advantage of using them is the fact that they do not require any distributional assumptions on the 

fire records. The benefits associated with non-parametric models are flexibility in fitting many 

functional forms without having to gain any prior knowledge and greater performance for 

predictions.  

Different machine learning-based models have been developed to analyze spatial fire 

distribution and to produce fire-danger maps. ANN was extensively investigated and proven to be 

a more robust approach in predicting wildland fires. A recent study by Tien (2018) implemented 

a hybrid machine learning algorithm based on the ANN with a novel hybrid training algorithm in 

a GIS platform to spatially model wildland fire danger. The developed model was found to enhance 

the accuracy of predicted solutions and the convergence rate. The results obtained from the hybrid 

machine learning algorithm outperformed other nonparametric models in terms of classification 

and prediction accuracy of wildland fire danger. This model was used to approximate the tropical 

forest fire danger in the Lam Dong province of Vietnam. 

In another example of non-parametric modeling, a basic machine learning algorithm was 

developed to compute and predict wildland fire models by using a decision tree (Stojanova, 2006; 

Pourtaghi, 2016). The purpose of implementing machine learning algorithms was to perform the 

features selection to reveal the variables that contributed the most to fire occurrences. The boosted 

regression tree (BRT), generalized adaptive model (GAM) and random forest (RF) were used to 
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discriminate between fire or no fire occurrence, and it was found that GAM showed a better 

performance peak compared to BRT and RF (Pourtaghi, 2016). One limitation associated with 

decision trees can be attributed to the availability of resources as smaller municipalities have fewer 

resources, having poorer accuracy (Guerreiro, 2018). 

A map of wildland fires was estimated using a nonparametric K-modes clustering 

algorithm to determine fire-scars and to predict fire occurrences (Tutmez, 2017). The fundamental 

characteristic of this algorithm is that it does not become computationally intense even when the 

number of categories to be clustered is substantial, such as meteorological and topographical data. 

However, solutions generated by this method do not always converge to global optimal. Another 

drawback is the determination of the optimal number of clusters as there is no valid and reliable 

research dedicated to finding an optimal number of clusters in the observed data (Tutmez, 2017). 

Non-parametric spatial fire-risk modeling was further developed by Than (2018), who used 

three advanced machine learning algorithms with GIS software. The algorithms implemented 

include Support Vector Machine classifier (SVMC), Random Forests (RF), and Multilayer 

Perceptron Neural Network (MLP-Net). This study intended to compare these to more 

conventional methods. Eventually, it was revealed that all the test algorithms outperformed 

conventional methods. The results also showed that MLP-Net provided better fire occurrence 

predictions over the RF and SVMC algorithms based on the results of statistical significance 

testing conducted (Than, 2018). 

Artificial intelligence (AI) has been under development for quite some time and has 

recently emerged as an effective prediction modeling tool for several applications, such as natural 

hazards. As introduced, wildfires are one of the costliest natural hazards in Canada, and AI 

methods have been implemented in modeling wildfires. The models included are ANN, adaptive 

neuro-fuzzy interface systems (ANFIS), SVMs, RF, and CART. AI methods can also provide 

extensive information on fire occurrence and their spatial patterns, thus making it an indispensable 

tool for fire-risk management and planning. Furthermore, what gives AI the upper hand over other 

methods are its capability to be coupled with many other methods to enhance model quality.  

Metaheuristic optimization algorithms (MOA) are methods that can significantly enhance 

the performance of AI-based hybrid models. From the comparison study conducted by Jaafari 

(2019a), four different MOAs were hybridized with the chosen base AI models (ANFIS). The 

study area was Minudasht, in the eastern part of the Hyrcanian ecoregion of northern Iran. The 
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four MOAs included genetic algorithm (GA), particle swarm optimization (PSO), shuffled frog 

leaping algorithm (SFLA), and imperialist competitive algorithm (ICA). What Jaafari (2019a) 

found was that of all the hybrids, ANFIS-ICA provided the best performance for spatially explicit 

wildfire prediction and mapping for the dataset used. 

In another MOA comparison study, the development and validations of two-hybrid AI 

models were done between the GA and firefly algorithm (FA) for the spatially explicit prediction 

of wildland fires probabilities. The study took place in the Zagros ecoregion in Iran and used ten 

explanatory variables (i.e., elevation, slope, aspect, land use, rainfall, soil order, temperature, wind 

effect, and distance to roads and human settlements). The model assigned weights to each class of 

variables depending on the strength of the spatial association between the class and the probability 

of fire occurrence. The results from this study concluded that ANFIS-GA was the better performer 

of the two (Jaafari, 2019). 

In this final study, ANFIS was combined with the MOA called differential evolution (DE) 

and was compared to ANFIS-GA and ANFIS- PSO. The results showed that ANFIS-GA was the 

superior hybrid AI in both recognizing the pattern and predicting fire events (Moayedi, 2020). 

 

2.2.5. Summary 

While the earlier fire-risk models developed were non-spatial due to the limitation in 

computational powers in software and hardware, recent advances in geographic information 

systems (GIS) have allowed for the development of spatial fire-risk models (Hirsch et al., 

2001; Loehle, 2004). A significant benefit associated with spatial models is the advantages it offers 

to city planners. Landscape planning and prioritization efforts require spatial and quantitative 

information to determine locations where there is a risk of a fire igniting. Furthermore, assessing 

wildland fire-risk supports our understanding of the likelihood of fire occurrences, the impact on 

highly valued resources and assets (HVRAs), and their magnitude of response to fire. These 

spatiotemporal analyses could only be executed effectively using the highly accurate dataset 

(Thompson, 2015). The most accurate fire-risk model estimation and prediction depend on how 

detailed the available spatial data are and how efficiently they could be interpreted. The fusion of 

satellite images and LiDAR data has shown promising results in that regard. Hence, spatiotemporal 

data accuracy and availability are very crucial to building a reliable wildland fire- risk model. 
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 Nonparametric and parametric models showed promising results as well. Drawbacks 

experienced in nonparametric models were the complexity of the development of the model, as is 

the validation process. Parametric models, on the other hand, are different as they are based on 

simplicity and flexibility in accepting a mixture of continuous and categorical variables, as well as 

non-normally distributed variables (Bisquert, 2012; Chang, 2013). Moreover, when parametric and 

nonparametric models were compared, with logistic regression and ANN, respectively, it was 

found that they had similar performance metrics in fire occurrence prediction (de Bem, 2019). 

 By reviewing the research conducted in the past, it is proposed that the combination of 

spatial and parametric modeling approaches be used for developing a reliable fire risk model. Even 

though non-parametric modeling with AI seems to be promising, its lack of transparency with the 

calculations makes it difficult to understand, in greater detail, how each variable plays a role in the 

modeling process. The new modeling method, on the other hand, will benefit from both the 

parametric modeling method’s ability to use a wider variety of variables while preserving their 

distinct spatial relationships. Together this combination is expected to provide promising results 

in model development, calibration, and estimation of wildland fire occurrences. 

 

2.3. Urban vs. Rural Fire Models 

Modeling urban fires pose a distinct set of challenges not seen in rural fire models. One of the most 

significant differences is the fire’s behavior from a burning structure in an urban setting to a 

widespread brush or forested fire. Fires in the rural area propagate via surface spreading and crown 

fires, where there is little restriction to flame spread and fuel for the flames is immediately 

available at the propagation front (Quintiere 2016). 

Fires in dwellings or urban settings differ in that they can be compartment fires, or fires 

contained within a room, zone, or region. Modern structures contain fires within the compartments 

for a set “burn time” for safety, as it allows time for people to egress the structure and for 

firefighters to arrive (Quintiere 2016). In a large-scale disaster, such as the aftermath of an 

earthquake, urban fire models regard multiple buildings together as an ensemble, as damaged or 

collapsed buildings will cause a fire to spread more easily from one building to another in all 

directions through fire-spread methods (Thomas, 2002; Cousins, 2002; Cousins, 2003; Himoto, 

2003).  
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Fire-spread methods are pathways for which fire from one structure can spread to another 

and include openings, collapsed buildings, flame brands, direct flame contact, emitted radiation 

through fuel, fire temperature and compartment properties, and radiative heat transfer (Carlsson, 

1999; Heron, 2003).  

Fire spread via openings is the most common fire spread method between non-contiguous 

buildings, by which fire spread by radiated heat. Radiation heat spread can occur if there is a 

straight line from the radiating and receiving buildings (Heron, 2003). Fire spread via collapsed or 

damaged buildings often occurs because of an earthquake. In earthquakes, collapsed buildings with 

a non-combustible cladding may have combustible contents which will be exposed, allowing for 

a continuous fuel bed over which the fire may spread (Heron, 2003). Flame brands are basically 

the extremely hot pieces emitted from burning materials blown in air which may travel far 

distances. Fitting external surfaces with fire-resistant claddings is a way of protection from flame 

brands (Carlsson, 1999). Direct flame contact occurs through projected flames. It is possible that 

the flame from an opening can hit a nearby building and cause a fire (Carlsson, 1999). The flame 

itself has a high level of heat, and if the projection is large enough for the flame to reach a nearby 

building, ignition may result (Heron, 2003). Radiation ignition is the most common method of 

spreading fire amongst buildings and can occur at greater distances than by direct flame contact 

(Carlsson, 1999). 

Two conventional models used in urban fire modeling are the static fire model and dynamic 

fire model. The static fire-spread model is based upon the “critical separation” concept, which is 

defined as the maximum critical distance that a fire can be transferred from one building to the 

other, and it can be computed and identified using GIS, as shown in Figure 2-2 (Cousins, 2003). 

Static models assume that the fire will keep spreading in all directions from one zone to another 

until the fire encounters a separation distance greater than the critical separation (Thomas, 2002). 

The critical separation distance serves as a fire break between buildings, potentially halting fire 

spread, assuming that there is no wind and that there are no other structures or flammable materials 

within the critical separation zone. However, this model does not take into consideration some 

biasing factors, such as the slope and active suppression (Thomas, 2002). 
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Figure 2-2 Generalized concept of critical separation. (a) Vertical section. (b) Horizontal section, 

(adopted from O’Connor, 2016). 

 

 On the other hand, the dynamic fire-spread model is constructed based upon the “cellular 

automation” technique to model the fire spread over time using GIS (Cousins, 2002; Cousins, 

2003). GIS divides the map into equal-sized cells, where each cell then allocates the properties of 

whatever it has. For instance, if a cell has a building, then it is considered a fuel cell and takes the 

properties of a building. On the other hand, a cell that lies over a roadway, grassland, or paved 

areas is considered an empty cell as it will hinder the spread of the fire. The dynamic model 

includes a factor for wind; however, like its static model counterpart, it does not consider some 

biasing factors, such as the ground slope and active suppression (Thomas, 2002; Cousins, 2002).  

In determining the safe separation distances between buildings, the predicted fire 

temperature in the compartment, and the levels of emitted radiation are essential parameters to use 

(Carlsson, 1999). An urban fire model is developed using two sub-models. One model predicts the 

building fire behavior under the exposure of the heating coming from other building fires while 

the other models the thermal environment caused by building fires (Himoto, 2003). The building 

fire model is based on a single zone, such that when the temperature of the building, whether the 

heat source is from within or from another building nearby, exceeds a specific heat flux, the fire 

loads into the compartment, ignites and burns. The thermal environment model considers the fire 

thermal radiation and fire-induced plume as the primary fire spreading factor in building-to-
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building. Simulations have shown that roof burn-through has little effect on the overall losses from 

a fire, while fire losses can increase dramatically by up to 430% through broken windows, as 

shown in Figure 2-3 (Himoto, 2003; O’Connor, 2016). 

 
Figure 2-3 Difference between intact and broken window, (adopted from O’Connor, 2016). 

 

Vegetation growth between buildings or other structures may aid in the fire spreading 

between them as it acts as a fuel source within that separation gap. This type of vegetation growth 

should, therefore, be included in urban fire modeling, either statically or dynamically; otherwise, 

the model will probably underestimate the losses (Heron, 2003).  

 

2.4. Fire Risk Management and Building Regulations 

Risk can be defined in a variety of ways based on context. The Oxford dictionary defines risk as 

the chance or possibility of danger, loss, injury, etc. (Simpson, 1989). Risk can be measurable or 

unmeasurable, where the latter refers to the uncertainty with the risk, and, therefore, uncertainty 

should be distinguished from measurable risk (Fourie and Burger 2000). This section will define 

risk in wildland fire. The ISO 31000 risk management definition is the identification, assessment, 

and prioritization of risks (Purdy, 2010). Put succinctly, if there is a risk of wildland fires, then 

there will be a fire-risk assessment and fire-risk management, which will also be covered in this 

section. 

 



 

25 
 

2.4.1. Wildland Fire Risk Definition 

Risk is the probability of having an undesired event, or the realization of a hazard and its outcomes 

(Simpson, 1989; Fourie and Burger 2000; Purdy, 2010). Wildland fire risk is the probability of a 

wildland fire occurring at a specific location under specific circumstances and conditions, together 

with its expected outcome as defined by its effects on the object, i.e., risk = likelihood of a fire 

occurrence × the impact or outcome of the fire (Bachmann, 2001; Chalkin, 2010; Johnston, 2020). 

When accounting for the likelihood of a fire and its potential affects, it is critical to managing the 

risk and the trade-off qualitatively and effectively. To calculate the fire risk, the conditional 

probability of a wildland fire occurrence, the chance of ignition, and the directional fire spread of 

the ignited fires must be included in the equation. This can be expressed as: 

𝑅𝑖𝑠𝑘 = ∑ 𝑝(𝐹!)[𝐵! − 𝐿!]"
!         (1)  

where risk is represented as the sum of the probability of fire at the ith wildland fire behavior 𝑝(𝐹!), 

multiplied by the difference between the potential benefits (B) and losses (L). Including both the 

benefits and losses reflects the change in perception that “all fire is “ad” mentality and is crucial 

in determining the full impacts of a fire (Hardy 2005; Miller and Ager 2013). 

 Equation 1 can be expanded to determine the risk of a variety of values, such as humans 

(e.g., loss of life, lost wages, or mental health effects), infrastructure, ecosystem, or habitat. The 

equation for wildland fire risk can now be expressed as: 

𝑅𝑖𝑠𝑘 = ∑ ∑ 𝑝(𝐹!)[𝐵!# − 𝐿!#]"
#

"
!        (2) 

where Equation 1 is changed by inserting the impact of the jth value under consideration, summed 

over n values being considered (Chalkin, 2010). Figure 2-4 is a flowchart representation of the 

equation. 
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Figure 2-4 Wildland fire risk with primary components (rectangles) in their categories of inputs 
(capsules), (adopted from Johnston, 2020). 

The likelihood of occurrence is the probability that a wildland fire will occur based on two 

categorical inputs: the occurrence probability and fire’s behavior (ith fire behavior). ’Temporal and 

spatial extents must be considered when modeling its probability. Affects are the consequences of 

the fire event as quantified by the difference between Bij and Lij from Equation 2. This can be 

viewed as the change in the valuation of the valued object(s) based on their susceptibility and the 

exposure to the fire. The values included in a risk assessment are often referred to as values at risk 

but can alternately be referred to as highly valued resources and assets (Thompson, 2016). Finally, 

exposure is the spatial union between a valued asset and the behavior of the wildland fire. It also 

represents the extent to which the valued asset may be subjected to a fire. 

 

2.4.2. Fire-Risk Management 

Assessments of fire risk can guide management decisions to reduce the negative effects and 

promote the positive effects of fire (Sakellariou, 2019; Johnston, 2020). Some of the negative 

effects resulting from any wildland fire can be summarized as losing lives, valued assets, and 

injuries (Beverly, 2011). Even though the focus is usually given to the negative effects of a fire 

event, there are also several positive effects from fire events. For instance, fire is considered a 

major stand-renewing agent for the Canadian boreal zone and ecosystem by regulating the spread 

and effects of insects and diseases, and by influencing a species’ age structure, composition, and 

biodiversity (Brandt, 2013). Fires can trigger regeneration and create habitat heterogeneity across 

the Canadian boreal forest and grassland ecosystems (Weber, 1997; Shroder, 2014). Also, wildland 
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fires have an indirect positive impact on communities by encouraging the implementation of high 

standards and regulations in building codes, land-use zoning, and municipal planning to reduce 

the fire risk (Christianson, 2015). 

Fire-risk management can manifest in a variety of ways, such as using fuel management 

(Vojtek, 2007) to reduce extreme fire spread behavior, preventing unwanted anthropogenic fires, 

and enforcing fire suppression programs to slow or prevent the spread of fires (Finney, 2005; 

Wotton, 2017; Johnston, 2020). Negative effects can be lessened through evacuation and 

emergency plans (Beverly, 2011; Sakellariou, 2019) and enhanced building and zoning regulations 

to protect social and health vulnerable groups (Christianson, 2015). There is no single effective 

solution as there are lots of other mitigation options available, with each being unique to a specific 

situation. 

Multiple solutions can work together, and not all solutions are appropriate for every area 

(Beverly, 2010). A resilient ecosystem may have lessened risk because of how fast it can recover 

or adapt to a post-fire state based on its fire management regulations, actions, and policies (Keane, 

2018). This highlights the importance of re-evaluating all the strategies and actions available 

related to mitigation, emergency response, evacuation plans, and recovery. A fire-risk management 

answer may include the use of FireSmart principles and guidelines to lessen the vulnerability of 

structure ignition (Johnston, 2020). FireSmart is a Canadian program that provides suggested 

guidelines for land managers and homeowners to enhance public safety activities by proposing 

over 40 projects which involve activities related to planning, public education, and fuel mitigation 

efforts (Summers, 2014; FireSmart Canada, 2020). The concerned areas are where humans, 

communities, and infrastructure impinge with or are interspersed within wildland fuel, which is 

called the wildland–urban interface (WUI; USDA and USDI 2001). Implementations of FireSmart 

principles for better wildland fire resistance may include community initiatives, large-scale 

collaboration and coordinated program promotion, governmental and insurance economic 

incentives, or building codes implementation and land development guidelines (FireSmart Canada, 

2020; Johnston, 2020). Since the whole mitigation process starts with a well-educated community, 

the FireSmart Canada program regularly raises awareness to residents through online and printed 

resources (FireSmart Canada, 2020a). Further extensive research should be conducted on wildland 

fire-risk management to incorporate uncertainty and complex novel dynamics (Council of 

Canadian Academies, 2019). 
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2.4.3. Zoning & Building Regulations 

Fire-risk models assist officials in identifying requirements for zoning and building regulations for 

city planning, emergency response, and evacuation processes in case of any wildland fire 

occurrence. A fire can spread from one building to another based on the fire spreading parameters 

(Barnett, 1989; Carlsson, 1999; Heron, 2003; Hamins, 2012). For indirect fire spreading, there is 

convective heat transfer, and radiative heat transfer, where the typical values of radiation for the 

spontaneous ignition of wood is 33.5 kW/m2 (i.e., ignition in the absence of an ignition source), 

and 12.5 kW/m2 for piloted ignition (i.e., ignition in the presence of an ignition source such as a 

spark or a brand) (Barnett, 1989; Carlsson, 1999).  

Unfortunately, at the time of research, the current version of the National Building Code 

of Canada (NBCC) is not accessible to the public. Therefore, this section will reference other 

available literature and highlight only the most relevant information regarding building separation. 

The NBCC sets out tables of building separation based on the critically received radiation criterion 

of 12.5 kW/m2, which is like the values used in England and Wales, (Clarke, 1998). Canada uses 

higher values of emitted radiation and a flame projection distance from openings at 1.2 m to 

prevent fire spread through radiation and openings (Clarke, 1998; Carlsson, 1999; Himoto, 2003). 

The Canadian code uses configuration factors of 0.07 for traditional buildings and 0.035 

for buildings with combustible linings, which is expected to burn more vigorously. These 

configuration factors are the same as those set out by McGuire (1965) and resulted in expected 

levels of radiation of 180 and 360 kW/m2, respectively. The St. Lawrence Burns showed 

extraordinarily high levels of radiation after 16 minutes, much higher than what would be practical 

to use when determining building separation distances. The NBCC, therefore, requires that the 

separation distance should be doubled in areas where Fire Service intervention cannot be 

guaranteed within 10 minutes (Carlsson, 1999; Hamins, 2012). 

Cities in the provinces of British Columbia and Alberta have set building guidelines and 

zoning regulations in their land use bylaw. In British Columbia, for instance, Prince George, 

Williams Lake, Squamish-Lillooet Regional District, Fernie, North Vancouver, and Kelowna, 

have the building and zoning regulations that must comply with the B.C. edition of FireSmart. In 

Alberta, for instance, Strathcona County, Hinton, Fort McMurray, Slave Lake, Canmore, and 
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Banff, have building codes and zoning regulations for land use developments that must comply 

with the Alberta edition of FireSmart. Rules for property holders in WUI apply in:  

a) Priority Zones 1, defined within 10.0 m from structures, eliminate fuel and alter 

vegetation to fire resistance species to create an environment that does not aid 

combustion, as shown in Figure 2-5.  

b) Priority Zones 2, defined within 10.0 – 30.0 m from structures, expand fuel changed 

area by diminishing the flammable vegetation through thinning and pruning and 

produce an environment that will only aid low-intensity surface fires, as shown in 

Figure 2-5.  

c) Priority Zones 3, defined within 30.0 – 100.0 m+ from structures, eradicate the potential 

for a high-intensity crown fire through thinning and pruning, consequently slowing the 

movement of a fire approach toward structures, as shown in Figure 2-5.  

d) Fire resistant roofing materials (Class A or B) such as metal, clay tile, asphalt shingles 

and treated wooden shingles ought to be used on all buildings and structures.  

e) Fire resistant exterior walls materials such as stucco, metal, brick, rock, and concrete 

ought to be used on all buildings and structures. Although logs and overwhelming 

timbers are less viable, they are also allowed.  

f) Roof vents ought to be closed in and screened. 

g) Decks, porches, and balconies ought to be secured with fire-resistant materials. 

h) Chimneys ought to have affirmed spark arrestors; and  

i) Vegetation ought to be cleared 3.0m back from power lines and propane tanks.  

To mitigate the risk of fire hazards: 

a) Integrate ‘fire breaks’ at standard intervals across the roof, at the roof edge, and around 

all roof infiltrations.  

b) Use fire retardant plants such as sedums, which have a high-water content; and  

c) Use a sprinkler water system associated with a fire alarm (Canmore Revised Bylaw, 

2020). 
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Figure 2-5 FireSmart Priority Zones, (adopted from FireSmart Canada). 

2.5. Future Fire Risk and Climate Change 

Future fire activities may see a transition to a system with dramatic variable fire activity, 

considering the increasing occurrence of climatic extremes, the potential for unrestrained warming, 

and self-promoting carbon feedbacks (Price, 2013; Oris, 2014; Steffen, 2015; Johnston, 2020). The 

predicted changes are non-deterministic and variable across locations; however, the overall fire 

activity will diverge from the recent historical trends (Coogan, 2019). Since climate is more 

prevalent as a driver of fire activity in most areas of Canada, the effects of climate change will 

promote an increase in the variation and extremes in weather, such as increased temperatures, 

longer dry periods, and increased storm activities, which will dramatically increase future fire 

occurrences within Canada (Price, 2013; Wotton, 2017; Wang, 2017). These changes have already 

been recorded and recent studies conclude that dramatic fire weather and behaviour are 1.5 to 6 

times more likely because of anthropogenic emissions (Coops, 2018; Hanes, 2019; Johnston, 

2020). Climate change will increase the effects of wildfires relative to other natural disasters with 

the potential to impact physical infrastructure more rapidly and at a greater scale (Council of 

Canadian Academies, 2019). 

Human development and land use may change fuel characteristics in the future, resulting 

in changes in fire risk. Climate changes include species range shifts, changes in fuel consumption, 

loads, types, or arrangement (Hirsch, 2001; Wang, 2017). Pest outbreaks, along with climate 
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changes, will be another factor determining future fire risk. Both will cause dramatic large buildups 

of dead fuels which influence fire occurrence (Price, 2013). 

Effects on human population, building structures, and municipal infrastructures will 

encounter future changes as well. Canada’s population is growing mostly in dense urban centres 

with less direct wildland fire risk (Statistics Canada, 2020). Urban sprawl and recreational centres 

development increase the Wildland-Urban Interface (WUI), raising the fire risk on structures and 

populations (Johnston, 2020). Nowadays, isolated communities and indigenous communities have 

experienced an escalated population growth, which increases the probability of fire-risk 

occurrences, as these communities are already at risk because of their location (Johnston, 2020).  

Future changes to fire risk will have significant effects on fire management in Canada. 

Current research focused on the shifting or increasing of fire occurrences will affect expenditures 

of fire management. Because of climate-driven changes to fire, there will be an increase in fire-

risk occurrences probability. An expanding body of evidence shows that besides rising costs, future 

climate-driven changes to fire action will surpass the current reaction capacity (Johnston, 2020). 

Contaminant capacity is especially susceptible to being overpowered when there are multiple 

different fires burning at once, which can cause huge, escaped fires (de Groot, 2013). Escaped fires 

are expected to extend up to 92% by the end of the century in the province of Ontario, which will 

greatly outpace resources necessary to manage these fires (Hirsch, 2006). Climate change effects 

also suggest that there will be more extraordinary fire weather. 

Climate change will drive critical changes in annual burning rates within the boreal 

wildland. It is essential to determine accurately the climate change extent in the fire risk forecasting 

and modeling process. This can be done by integrating the long-term greenhouse climate changes 

which are obtained from an anthropogenic climate forcing scenario known as the Representative 

Concentration Pathway (RCP). The RCP attempts to capture future patterns such as whether 

humanity will continue to consume fossil fuels at an increasing pace or convert to renewable 

energy. They also forecast how greenhouse gas concentrations in the atmosphere will vary in the 

future due to human activity. Ultimately, the RCPs are used by scientists to model climate change 

and create impact scenarios for future planning. The RCPs' numerical numbers (2.6, 4.5, 6.0, and 

8.5) relate to concentrations in the year 2100. Figure 2-6 depicts future concentrations in the four 

RCPs, which vary from very high (RCP8.5) to very low (RCP2.6).  RCP 8.5 results in substantially 

higher temperature increases, hence, larger impact and higher cost. Adapting to these changes will 
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also be more expensive. Therefore, a balance between the cost of impacts and the cost of adaptation 

must be achieved (Moss, 2008; Weyant, 2009). 

 

 

Figure 2-6 The four RCPs ranges future concentrations, (adopted from Coastal climate change 

infographic series) 

2.6. Summary 

Presented in this section is a thorough overview of fire-risk modeling, planning, management, and 

mitigation. Furthermore, a brief background on the importance of building a fire-risk model due 

to the increased risk of fire occurrences in Canada was also discussed. Finally, a set of actions and 

considerations were outlined for cities to build a reliable fire-risk model and management system. 

 There are a vast number of parameters that contribute to wildland fire occurrences, which 

could be grouped into 4 major categories: meteorological, topographical, biological, and 

anthropogenic. The development of a fire-risk model requires a substantial amount of data across 

many of the criteria discussed. This is a logical problem that can be solved using state-of-the-art 

datasets. The spatial scale of these parameters can be quite extensive; thus, any way to streamline 

the data collection while maintaining a high level of quality is of critical importance. One potential 

solution would be to use high-resolution LiDAR and satellite images, as they have been shown to 

provide a high level of details while also being quick to get. Combining both types of datasets can 
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provide an excellent source of topological, biological, and anthropogenic variables efficiently. 

Likewise, some meteorological variables can best be served by satellite images such as cloud cover 

and solar radiation. Another advantage of using these remotely sensed data is its availability from 

an online database. 

 Research into fire-risk modeling has surged in recent years due to devastating fire events. 

To help mitigate their detrimental effects on living communities and environment, researchers 

have attempted to develop fire-risk prediction tools, forecasting models, and analysis techniques. 

Non-spatial models were the first ones to be developed because of its simplicity and ease of 

computations. Spatial models were then developed with computer hardware and software that can 

handle the more computationally intense calculations. From this advancement, spatial modeling 

has now become the dominant method of choice given the improvements in predictions and model 

accuracies over the non-spatial counterpart.  

 Parametric and non-parametric modeling techniques were implemented with some success. 

It has been shown that the parametric methods performed well, if not slightly better, with the added 

advantage of its being able to see the entire model development process. Hybrid non-parametric 

(i.e., Hybrid-AI) techniques are a recent addition to the fire modeling and have shown to produce 

highly accurate fire-occurrence predictions; however, validation of these hybrid models required 

the use of another hybrid non-parametric model whereby making it a less preferable method. The 

parametric techniques provide transparent means of developing and implementing models to 

delineate wildfire-prone areas. 

 When applying the modeling techniques covered above, it is essential to realize that urban 

risk models differ significantly from rural risk models. The behavior of the fire, the risk to human 

life, the risks to valued assets, and other confounding factors vary significantly between the two 

environments. Thus, it is imperative to define what risk model will be researched, as it will affect 

the choice of parameters chosen and modeling techniques applied. While there are few similarities 

in terms of how risk is assessed in both environments, the biggest differences lie in how the fire 

spreads, propagates, and is assessed in the two different settings. Hence, it is crucial to identify the 

scope of this project, which will focus on developing a framework to model wildfire risk only. The 

risks because of the presence (i.e., in terms of magnitude and severity) of the aforementioned 
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factors will be explored; however, the propagation and eventual consequence of this fire in terms 

of how it will spread over time is not part of the scope of the project. It’s worth mentioning that 

the proposed model is not based on the risk quantification and the probability generation. It will 

solely be based on the AHP multi-criteria technique.  

 Fire incidents are considered a risk due to their probability of occurrence as well as the 

impact associated with it. This risk should be taken into consideration in the evacuation and 

emergency response plan by city planners and officials and governed by a robust fire-risk 

management system. Fire-risk assessment is an essential step in fire-risk management, and it must 

consider both the negative and positive effects of fire occurrences. Overall, fire-risk management 

plays a vital role in zoning and building codes and regulations to maintain the resiliency of the 

City before, during, and after a fire occurrence. This is the ultimate goal of every city that wishes 

to become a climate resilient metropolis. 

 Climate changes over the past decades have shown to have a tremendous impact on fire-

risk assessment and modeling. Hence, it is essential to take climate changes into account in future 

fire-risk projections and modeling. Climate changes have been observed in extended dry periods, 

the increase in temperature and greenhouse effects, and the increase in thunderstorms and thunders. 

Also, climate changes affect the fuels and manipulate their structure and characterization, as well 

as human development and land use shifts, leading to an increase in wildland and urban fire risk. 
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3. Data Sources & Feature Extraction 
In terms of the four recommended criteria: climatic biological, topographic, and anthropogenic, 

there are a variety of resources available to obtain current and historical datasets. Climatic data 

can be obtained from Alberta’s Department of Agriculture and Forestry which provides current 

and historical Alberta weather station data. Climatic data for Canada can be obtained from 

Environment Canada’s online database and Canada Wildland Fire Information System. NASA’s 

Daymet online databases also provide an extensive repository of daily meteorological observations 

for North America from 1980 onwards. 

 Biological data can be obtained from multiple sources, including the CoE’s Digital 

Elevation Model (DEM) (Jaafari, 2018; Sánchez, 2018), or aerial LiDAR data (Erdody, 2010; 

Sánchez, 2018). Similarly, vegetation types and densities can be determined via satellite imagery 

(Hong, 2019). Using the data obtained from both methods, a clear picture of the biological criterion 

for an area can be quickly established. 

Topographic factors can be obtained from the CoE’s Digital Elevation Model (DEM) or 

aerial LiDAR data. Likewise, satellite imagery can also provide insight into the topographical 

characteristics of the regions under investigation (Scott, 2013; Kelly, 2015; Wang, 2017; Thach, 

2018; Hong, 2019; Jaafari, 2019). 

Anthropogenic data can be obtained from the LiDAR dataset, satellite images, or multiple 

other sources using the CoE’s open data portal. 

In this report, a comprehensive geo-database for developing the fire risk-model was first 

constructed from datasets procured from the CoE, the Faculty of Geography and Environmental 

Studies in the University of Regina, and other available online datasets. Each dataset was 

converted into a raster format using ArcGIS 10.7. A list of all the 12 variables used is this study 

along with their sources is shown in Table 1. 
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Table 1 All parameters used in the fire-risk modeling. 

Parameters Dataset Source 

Elevation 

LiDAR data CoE local authorities Slope 

Aspect 

NDVI Landsat 8 satellite images USGS EarthExplorer 

Forest type uPLVI data CoE local authorities 

Land use Land use dataset CoE Open Data Portal 

Proximity to water surface 
LiDAR data CoE local authorities 

Proximity to roads 

Annual/Seasonal temperature 

Road Weather Information 

System (RWIS) stations. 

RCP4.5 – Alberta Climate 

Information Service and CoE 

local authorities. 

RCP8.5 – University of 

Regina. 

Annual/Seasonal precipitation 

Annual/Seasonal humidity 

Annual/Seasonal wind speed 

 

3.1. Light Detection and Ranging (LiDAR) 

LiDAR dataset was obtained from the CoE, as depicted in Figure 3-1. The vertical accuracy of the 

LiDAR expressed in root-mean-square (RMS) is 2.4 cm or better. The two-sigma accuracy (95%) 

for a normal distribution was computed by multiplying the RMSE by 1.96. In order to appreciate 

the effort to build and compile this massive dataset, it is worth mentioning that the vertical 

accuracy, at the 95% confidence level, is approximately 4.7 cm. The calculated horizontal 

accuracies were determined to be 16 cm. This LiDAR dataset was collected in 2019, and it is 3.7 

TB in size with over 1400 files with an average of 30 million points per file and covers the entire 

city with a 200m buffer. Elevation, aspect, slope, proximity to roads, and proximity to water 

variables were used in the fire-risk model (to be discussed in detail in Section 4) from this given 

LiDAR dataset using ArcGIS 10.7 (ArcGIS Desktop, 2011). 
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Figure 3-1 A snapshot of the LiDAR data procured from the CoE. 

 

Python (Van Rossum, 2009) is a highly adaptable and powerful scripting language that is 

used in ArcGIS which is so powerful to perform computationally extensive geo-operations. The 

“arcpy” library was built to perform all the geospatial operations which were performed from the 

user-interface but in the scripting terminal. For each LiDAR file, only the ground and roads file 

were imported into arcpy, and then the spatial elevation operation was executed, as shown in 

Figure 3-2(a). Afterward, all the elevation files were imported in a mosaic function to merge them 

into one file that represents the elevation of the CoE, as shown in Figure 3-2(b). Having the 

elevation map of the CoE in hand, the slope function was then called to compute the slope map for 

the CoE. Finally, the aspect map was also computed from the elevation map using the aspect 

calculation function in the arcpy library. 
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Figure 3-2 (a) The LiDAR file proportion to the map, (b) The mosaic elevation file of the CoE. 

 

3.2. Landsat Satellite Images 

Landsat 8 satellite images were procured for the CoE in 2018 for the dry season, from April to 

September. The normalized difference vegetation index (NDVI) was computed from Landsat 8 

OLI satellite images. The satellite images were obtained from USGS Earth-Explorer 

(https://earthexplorer.usgs.gov/). Equation 3 calculates the NDVI from the downloaded files using 

the mathematical, spatial calculator in ArcGIS, as shown in Figure 3-3. 

NDVI = (NIR − RED) / (NIR + RED)      (3) 

where NIR and RED bands are the near-infrared and the red bands, respectively. 
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Figure 3-3 The procedures for the NDVI map generation. 

3.3. urban Primary Land and Vegetation Inventory (uPLVI)  

Regarding the biological variables extraction for all the vegetation areas in the CoE, urban Primary 

Land, and Vegetation Inventory (uPLVI) data, collected in 2018, were obtained from the CoE. The 

data is made up of hierarchical polygons with a minimum area of 1 hectare. The polygon classifies 

each area into a vegetated or non-vegetated Primary Land class. The Primary Land class has a 

more-detailed level called Land class, which defines the natural state of the polygon. Below the 

Land class is the Stand type is the canopy stratification found in Edmonton’s Urban Ecological 

Field Guide. The data contained the aforementioned hierarchy for primary, secondary, and tertiary 

features. All the features and parameters were listed in a table format, as shown in Figure 3-4 

(sample only).  

 

 
Figure 3-4 Features and parameters for the procured uPLVI data. 
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The forest type variable for only the dominant and co-dominant species was extracted from 

this dataset. Afterward, the steps below were followed to extract the vegetation areas from the 

uPLVI land class variable: 

a) From the features file, apply the following selection criteria to the table 

(”PRIMECLAS1” = ‘VEG’ AND “LANDCLAS1” <> ‘WET’). 

b) Export the features file to a shape file.  

c) Right click on the shape file and select properties.  

d) From the Symbology tab, select 'Categories' from the Show panel then unique values 

many fields.  

e) Select 'Edit table attribute' to enable editing the table.  

f) From the data management toolbox, select the 'Add Feature' tool to add a Risk field in 

the table.  

g) Assign Rank values into the Risk field.  

 

The output biologic forest type map is shown in Figure 3-5. Since the excluded pixels are 

NULL, it is essential to include a value for these given pixels because when all the maps are added 

together, the NULL pixels mask out the overlapping pixels in other raster files. ArcGIS provides 

a few options for converting NULL values to other constants, such as zero. To convert NULL 

values, one alternative is to use the Con operation in combination with the IsNull operation from 

the Spatial Analyst toolbox. Hence, we applied this formula to the forest_type raster: 

Con(IsNull(“forest_type”),0,”forest_type”). 
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Figure 3-5 The forest type map generated from the uPLVI. 

Understanding the category of each zone in the CoE is an important factor to consider as it 

makes it possible to determine the category of each vegetation area. The CoE’s Open Data Portal 

(https://data.edmonton.ca/) has a detailed dataset for the land use in the City. This dataset is 

composed of 327 categories. The model only considered the essential categories that match the 

CoE’s urban settings (Recreation areas, parks, open green areas, etc.). Another data source for land 

use was the uPLVI which, as mentioned earlier, had a field in the table to identify the land class, 

as either open green areas, anthropogenic parks, or forests. Hence, we could identify all the land 

use categories with high accuracy, as shown in Figure 3-6. Finally, the risk field was added to the 

table of the land use to identify the wildfire risk associated for each land use category using the 

same procedures as mentioned in earlier. 
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Figure 3-6 The land use risk class identification raster map. 

3.4. Road Weather Information Systems (RWIS) 

A major factor that influences the fire is the climate, such that higher temperatures with lower 

humidity and precipitation can stimulate fire ignition, and fire spread can be determined through 

wind speed. Meteorological data for the construction of climate maps were extracted by analyzing 

23 Road Weather Information System (RWIS) stations surrounding the CoE from Alberta Climate 

Information Service (https://acis.alberta.ca/), as shown in Figure 3-7. Climate variables, which 

result in a higher likelihood for a fire to ignite, are temperature, wind speed, precipitation, and 

humidity (Scott, 2013; Chang, 2013; Thach, 2018; Tien Bui, 2018; Hong, 2019; Kumari, 2020). 

Since these climate variables are point measurements, a spatial interpolation method is used to 

interpolate these variables over the entire study area. Kriging is a geostatistical process that creates 

an estimated surface from a scattering of z-valued points. The default kriging method is ordinary 

kriging, which is the most common and frequently used of the kriging methods (Oliver, 1990). 

Using the ordinary kriging interpolation technique available within ArcGIS 10.7 Geostatistical 
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Analyst tool, a raster climatic map could be generated for each variable. However, the raster maps 

lacked both accuracy and high resolution to keep up with other detailed, high-resolution raster 

maps. 

 

 
Figure 3-7 All selected RWIS stations surrounding the CoE 

The CoE local authorities provided us with both RCP4.5 and RCP8.5 climate dataset. 

These datasets were used as one annual climatic point per year. However, this would be a huge 

limitation to identify high risks and vulnerable specific regions in the CoE, because we had all 

other variables and criteria in spatial representation which are easily integrated together into 

ArcGIS. However, regarding the RCP4.5 dataset, we needed to integrate it into our model to have 

an overview of the key differences in the climate change forecast between RCP4.5 and RCP8.5 

and how they are going to affect the fire risk assessment.  

On the other hand, we managed to find a spatial RCP8.5 dataset. For actual and accurate 

assessment, we used the RCP8.5 climatic data obtained from the University of Regina to generate 

the raster maps for the climatic variables. One interesting fact in this dataset is its accuracy. The 

data consists of 120x66 grid points centred over CoE with a 30m x 30m grid area, as depicted in 

Figure 3-8. 
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 The climate in Edmonton has a high meteorological variance between its seasons, and its 

low bias makes building an accurate model challenging. Extracting the fire season climate data 

was a crucial step to build an accurate fire-risk assessment model. According to city experts, the 

fire season in CoE lies between May and October. Therefore, the data have gone through extensive 

feature engineering to include both annual and seasonal climatic projections.  

As mentioned earlier, we generated the raster maps for each climatic variable, which were 

more accurate using the ordinary kriging interpolation technique using ArcGIS 10.7 Geostatistical 

Analyst tool. The steps followed to generate the climate maps are:  

a) In the Geostatistical Analyst tool, click on the geostatistical wizard.  

b) From the methods panel, select the Kriging/Cokriging geostatistical method, and in the 

Input Data panel, select the Source Dataset, which is the events file, and select the Data 

Field as the seasonal climate variable, like temp_may_to_oct. Afterward, click ‘Next’. 

 
Figure 3-8 The RCP8.5 120x66 gridded points covering the CoE for estimating the climate 

variables. 
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c) In our case, we selected the ordinary kriging type for a prediction output surface type, 

and we set the order of trend removal to first order. It is essential to remove the surface 

trend from the data. Then click ‘Next’. 

d) There are different models of semivariogram such as Gaussian, exponential, spherical, 

etc. The data's geographical autocorrelation and prior knowledge of the occurrence are 

used to determine which model of the semivariogram to use (Astraatmadja, 2016). In 

our case, the exponential model is used since spatial autocorrelation decreases 

exponentially with increasing distance. Then click ‘Next’. 

e) The semivariogram will show if there is a surface trend in the data, as shown in Figure 

3-9. To remove trend, the optimization of a semivariogram/covariance model could be 

performed assuming that just one semivariogram model is used, that it is isotropic, and 

that the default searching neighbourhood has four sectors (ArcGIS Desktop, 2021). 

Then click ‘Next’.  

f) Make sure the neighborhood type is set to standard. Then click ‘Next’. 

g) In the predictions error panel, we need to make sure that: (1) the root-mean-square 

standardized has to be near 1, (2) RMSSE should be near to 1, and (3) ASE is close to 

RMSE. If the prediction error does not meet the above three criteria, we will need to 

go back to choose different combinations in earlier stages of the model building. 

Otherwise, click ‘Finish’. Then click ‘OK’ on the prompt model summary window. 

h) The kriging prediction map generated in ArcGIS, the output from Figure 3-8 is shown 

in Figure 3-10. 

 
Figure 3-9 The semivariogram showing surface trend shown in the dataset. 
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Figure 3-10 The Kriging prediction map generated from the Events file in ArcGIS. 

As can been seen in Figure 3-11, the generated kriging prediction map is covering the CoE 

with an extensive extent. Hence, the map needs to be trimmed to the exact extent of CoE. To 

execute this spatial operation, the data management toolbox contains a clip tool. First, we need to 

export the kriging prediction map to raster to use the clip tool. Second, we should open the clip 

tool and select the input raster as the exported raster kriging map and select the extent of CoE. 

Finally, the generated clipped map is the map that represents the climate variable for CoE, which 

can then be further processed to be continuous or discrete, classified or stretched map. 

There is a lot of room for further data exploration by changing the combination of different 

kriging properties to generate the climate present/prediction maps. The selected properties 

mentioned above were chosen with respect to the literature and data exploration. Statisticians and 

experts can further perform different kriging combinations to make the data represent the CoE 

variables as accurately as possible. 

Two major issues were raised upon data processing and feature engineering. First, a major 

issue that we encountered during the raster maps generation for each variable was their different 

projections. ArcGIS has a tool that fixes the projections; hence, all the maps were layered 

appropriately in the same projection with the same coordinate system. We used the following steps 

to project the data correctly using the latitude and longitude:  

a) Insert the CSV file into the Table of Contents.  

b) Right click and select Display XY Data.  
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c) Set the Coordinate System to “GCS_North_American_1983”, which was our initial 

coordinate system chosen from the LiDAR dataset. 

Second, all the RCP8.5 files were supplied in an NC file format, which should be converted to a 

CSV file to be integrated with the ArcGIS model. Python scripting language was used to execute 

the file conversion. However, while processing the netCDF files, there has been an infinite loop in 

converting the precipitation dataset. Upon investigation, it was revealed that the reason for this 

infinite loop was that a field variable in the precipitation dataset was of 2D type whereas the 

netCDF file climate variable should be of Geo2D type. As shown in Figure 3-11, this data 

mismatch is elaborated using PanoplyWin software, which is a software that can slice and plot 

geo-referenced latitude-longitude, latitude-vertical, longitude-vertical, time-latitude or time-

vertical arrays from larger multidimensional variables, and slice and plot “generic” 2D arrays from 

larger multidimensional variables. In order to resolve this issue, we followed these steps: 

a) The conversion was done using the Python scripting code for all variables except of Type 

2D.  

b) The netCDF file was exported using PanoplyWin software to CSV file format.  

c) The two files were precisely integrated to match the lat2d and lon2d variables with the 

other fields.  

These files were then compiled using ArcGIS to produce the raster maps as mentioned earlier. 

 
Figure 3-11 The data mismatch in the climate variable in the RCP8.5 data elaborated using 

PanoplyWin software. 
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4. Methodology 
The overall workflow is shown in Figure 4-1 and it includes (1) compiling the 

independent/explanatory variables, (2) constructing the AHP matrix and assigning the weights to 

corresponding variables, (3) producing the fire risk assessment map, (4) generating forecasted fire 

risk maps, (5) generating the ecological vulnerability classification map, and finally (6) identifying 

the high-risk zones. According to the literature, combining the fire-risk assessment raster map with 

the vulnerability classification raster map provides an in-depth understanding of high-risk zones. 

This helps municipal authorities and decision-makers to better understand fire risk in specific 

zones, allowing them to plan and execute effective fire risk management strategic plans in the 

event of a fire outbreak. 

In an attempt to provide comprehensive and informative recommendations to fire risk 

management and climate resiliency planning, three critical items were investigated. First, 

ecological vulnerability classification map was constructed to define three different levels of 

vulnerability; namely, ecological green line, ecological grey line, and ecological red line. As per 

the literature, ecological green line areas can be extensively developed; ecological grey line areas 

can serve as an ecological buffer zone; and ecological red line areas cannot be developed and must 

be preserved (Zhang, 2015). Second, it is essential to define the responsibility of all stakeholders 

and their role in fire prevention and mitigation efforts. Wildfires burn indiscriminately across both 

private and public property, and hence everyone has a responsibility in wildfire prevention. 

Finally, by integrating all the above information, four cornerstones of strategic planning and action 

are proposed for each of the high-risk area/zone. These cornerstones will support the efforts to 

build a climate resilient city and serve as catalysts for climate adaption. The four cornerstones are 

separated into two categories: risk management and long-term insurability, as well as the ability 

of the zone to attract investments and communicate resilience benefits. 
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Figure 4-1 The overall workflow of the adopted methodology. 

 

4.1. Analytical Hierarchy Process and Weight Assignment 

Analytical Hierarchy Process (AHP) method (Saaty, 1977) is a comprehensive hierarchical weight 

assignment method used for an efficient multi-criteria decision analysis (MCDA). For each factor 

pair, an expert decision maker defines to what extent one factor is more important than the other. 

Hence, this defines the relative position of one factor compared to all other factors. Quantitative 

weights can be assigned to each factor using the eigenvalue matrix technique so that distinct 

elements can be weighted with a homogeneous measurement scale. The weight assigned to each 

factor will reflect its priority compared to all other factors. Weights assigned are verified by 

calculating the consistency ratio for each Eigen matrix (Eskandari, 2017). Figure 4-2 depicts a 

simple AHP hierarchy with only one level of criteria which contribute to choosing an alternative. 
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Figure 4-2 A simple AHP hierarchy, (adopted from Saaty, 2008). 

 

Its simplicity and transparency are advantages that characterize AHP; however, its major 

advantage lies in the hierarchical framework which allows users to consider and measure the 

relative importance of indicators. To build hierarchical importance, a preliminary weight must be 

assigned to each variable in the matrix based on its relative impact on fire ignition and the 

associated ramifications. Since each weight significantly affects the influence variables have on 

the outcome, weight assignment is a crucial step in building the fire-risk model. As mentioned 

earlier, high weights were assigned to climatic and human variables, while low weights were 

assigned to biologic and topographic variables. After building the initial matrices with the assigned 

weights, environmental experts were involved to review and to propose weights concerning the 

case study. Finally, the consistency ratio was estimated for each matrix to check for consistency. 

In this report, the fire risk model was developed using five pair-wise comparison matrices: 

(1) Topographic variables Eigen matrix; (2) Biologic variables Eigen matrix; (3) Meteorologic 

variables Eigen matrix; (4) Anthropogenic variables Eigen matrix; and (5) Fire-risk criteria Eigen 

matrix, as shown in Table 2 and Table 3. 
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Table 2 The calculated weights for each variable in each given criterion. 

Criterion Variable Associated AHP Weight 

Topographic Slope 0.56 

Aspect 0.32 

Elevation 0.12 

Meteorologic Seasonal Temperature 0.42 

Seasonal Precipitation 0.37 

Seasonal Wind Speed 0.15 

Seasonal Humidity 0.07 

Anthropogenic Land Use 0.7158 

Proximity to Water 0.2841 

Proximity to Road 0.00002 

Biologic Forest Type 0.75 

NDVI 0.25 
 

Table 3 The calculated weights for each criterion. 

Criterion Associated AHP Weight 

Meteorologic 0.53 

Anthropogenic 0.31 

Topographic 0.08 

Biologic 0.08 

 
4.2. Fire-Risk Model Analysis 

The fire-risk model in this report is evaluated based on 4 different criteria, each with a unique set 

of variables. In total, there are 12 variables that are considered major factors for fire ignition in an 

urban setting. To briefly go over each criterion: first is the climatic criterion, which is considered 

a major fire trigger. Within this criterion are temperature and precipitation variables that play a 

significant role in fire ignition, especially when high temperature is combined with dry weather. It 

also holds wind speed and humidity variables, which influence fire behavior and its ramifications. 

The second criterion is anthropogenic, which affects fire ignition. It contains land use variable, 
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proximity to water, and proximity to roads. Proximity to water and road are considered fire 

mitigation variables. This is because water surfaces tend to increase soil moisture of surrounding 

areas, thereby subsequently reducing fire risk. Land use fire risk can be activity based. An example 

of this is camping over vegetation, which can be a fire hazard. The third and fourth criteria are 

topographic and biologic that are considered to have lower risk of fire ignition. Topographic 

criterion contains 3 variables: slope, elevation, and aspect. Slope relates directly to fire behavior, 

while elevation and aspect relate manly to the fire ramifications. Biologic criterion contains 2 

variables: forest type and NDVI. 

The climatic, anthropogenic, topographic, and biologic risk maps were calculated based on 

Equations 4 - 7, respectively. The fire-risk model was developed using Equation 8, which is based 

on the weights obtained from AHP.  

Climatic Risk (CR) = 0.42*TMP + 0.37*PCP + 0.15*WS + 0.07*VAP  (4) 

Anthropogenic Risk (HR) = 0.72*LU + 0.27*PRXW + 0.01*PRXR  (5) 

Topographic Risk (TR) = 0.56*SLP + 0.32*ASP + 0.12*ELE   (6) 

Biologic Risk (BR) = 0.75*FT + 0.25*NDVI     (7) 

Fire Risk = 0.53*CR + 0.31*HR + 0.08*TR + 0.08*BR    (8) 

where TMP is temperature, PCP is precipitation, WS is wind speed, VAP is humidity, LU is land 

use, PRXW is proximity to water, PRXR is proximity to roads, SLP is slope, ASP is aspect, ELE 

is elevation, FT is forest type, and NDVI is the normalized difference vegetation index. 

All variables and criteria were classified into five risk classes: Very low, Low, Moderate, 

High, and Very High. Classes and ratings are presented in Table 4 and a holistic conceptual model 

is shown in Figure 4-3. Elevation and slope were classified using the natural breaks (jenks) found 

in the City’s data characteristics, where it is observed that lower elevations have higher fire 

frequencies (Calviño-Cancela, 2017). Aspect was classified according to the literature, it is 

revealed that lower risk is associated to northern aspects (Eugenio, 2016; Hong, 2018; Busico, 

2019). Land use was classified based on types and density of flora present as well as whether there 

is a body of water. The climatic factor was classified using equal intervals in accordance with the 
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well-accepted notion that lower risk is associated with lower temperatures, higher precipitation, 

low wind speed and low humidity. It is worthwhile noting that the classification of data presented 

in this report was conducted based on the literature and can be adjusted differently using ArcGIS. 

Different classification methods, such as quantile and geometrical interval, can also be further 

explored to fit specific requirements. 
Table 4 Model variables with classes and ratings for the assessment of fire risk for the CoE. 

Assessment 
Level 

Slope  
(°) 

Aspect Elevation 
(m) 

Temperature 
(°C) 

Humidity 
(g.m-3) 

Wind 
Speed 
(kph) 

1 Very low 0 - 4 North & 
Northeast 

710 - 754 11.3296 - 
11.3954 

0.005943499 - 
0.005988009 

5.37884235 
- 
5.43728366 

2 Low 4 - 10 Northwest 687 - 710 11.3954 - 
11.4581 

0.005912342 - 
0.005943499 

5.43728366 
- 
5.49351964 

3 Medium 10 - 20 Southeast & 
East 

668 - 687 11.4581 - 
11.5026 

0.005883093 - 
0.005912342 

5.49351964 
- 
5.53983163 

4 High 20 - 36 Southwest & 
West 

640 - 668 11.5026 - 
11.5420 

0.005857023 - 
0.005883093 

5.53983163 
- 
5.59165694 

5 Very high 36 - 89 South 598 - 640 11.5420 - 
11.5876 

0.005825866 - 
0.005857023 

5.59165695 
- 
5.66002225 

Assessment 
Level 

Precipitation 
(mm) 

Land use Distance 
from river 
(m) 

Distance 
from roads 
(m) 

Forest Type NDVI 

1 Very low 405.7283386 - 
465.4987183 

Developed 
& Naturally 
Non-
Vegetated 

0 - 1000 0 - 0.179748 Mixed 
deciduous 

-1-0 

2 Low 372.4276985 - 
405.7283385 

Wetland 1000 - 2770 0.179748 - 
1.047223 

Balsam poplar 0.66-1 

3 Medium 339.9809209 - 
372.4276984 

Modified 2770 - 4965 1.047223 - 
5.23372 

Deciduous 
mixedwood & 
White spruce 

0.33-0.66 

4 High 304.9725556 - 
339.9809208 

Naturally 
non-
wooded 

4965 - 7944 5.23372 - 
25.438054 

Trembling 
aspen 

0.15-0.33 

5 Very high 247.7637634 - 
304.9725555 

Naturally 
wooded 

7944 - 
13275 

25.43805 - 
122.945614 

Coniferous 
mixedwood & 
Black spruce 

0-0.15 
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Figure 4-3 Conceptual model of fire-risk assessment model building. 

4.3. Climate Predictions 

Given the increased probability of wildfire events developing in Western Canada, protecting 

municipalities’ green spaces and urban infrastructure has become a significant concern. Significant 

efforts have been exerted by major municipalities in North America to tackle climate change and 

by doing so create a climate resilient city. One of these major municipalities is the City of 

Edmonton (CoE). In 2018, the CoE joined 4,500 cities around the world in a shared commitment 

to obstruct global mean temperature rise from surpassing 1.5°C. To accomplish this, CoE has set 

a target to eradicate a maximum of 155 megatonnes of greenhouse gases within before 2100. 

 Climate predictions were accounted for in the proposed model via RCPs. RCP8.5 assumes 

that the global emissions will follow current trajectory (i.e., “business as usual” scenario). RCP4.5 

AHP Weight 
assignment

Climatic Criterion
•Temp
•Precipitation
•Wind Speed
•Humidity

Topologic 
Criterion
•Elevation
•Slope
•Aspect

Anthropogenic 
Criterion
•Land use
•Prox to Water
•Prox to Roads

Biologic Criterion
•Forest Type
•NDVI
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assumes there to be climate mitigation actions taken to limit global temperature rise to less than 

2°C (i.e., “strong mitigation” scenario). RCP8.5 is the most conservative as it represents the worst-

case scenario. In collaboration with the University of Regina, the procured RCP8.5 data have 

temperature, precipitation, wind speed and humidity variables with a reference period between 

2021 and 2080. The data were engineered to represent the fire season average for each variable. 

Fire season in CoE starts from May to October, where all the climate variables have the highest 

potential for fire ignition. The data comprised 120x66 grid points centered over CoE with a 30m 

x 30m grid area. The projections of the climatic variables were calculated for 2021, 2050 and 2080, 

as depicted in Figure 4-4. The classification method used for each climate variable projection uses 

natural breaks (Jenks), which effectively groups similar values together while maximizing the 

differences between the classes. 

Before discussing variable projections any further, it is worth mentioning that the RCP4.5 

data project only annual temperature and annual precipitation variables, while the RCP8.5 data 

project data all the climate variables. First, regarding the annual projections, the RCP4.5 climate 

projections for 2050 predicted that annual temperature will increase by 40.5% and annual 

precipitation will decrease by 3.2%. On the other hand, RCP8.5 predicted that the annual 

temperature will increase by 28.7% and annual precipitation will increase by 10.0%. With regard 

to the RCP4.5 climate projections from 2050 to 2080, the annual temperature will increase by 

18.0% and annual precipitation will further decrease by 3.3%. With respect to RCP8.5, annual 

temperature and annual precipitation will increase by 54.3% and 4.6%, respectively.  

Altogether, these results make intuitive sense as RCP8.5 values showed higher overall 

percentage of change than the RCP4.5 values. When comparing both current and 2080 scenarios, 

the percent of change in temperature for RCP4.5 and RCP8.5 were found to increase by 65.9% 

and 98.7% while precipitation amounts were predicted to decrease by 6.3% and increase by 15.0%, 

respectively. Table 5 summarizes the projected RCP4.5 and RCP8.5 values for annual temperature 

and precipitation. 
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Table 5 The annual temperature and annual precipitation variables projection for RCP4.5 and 
RCP8.5 (source: CoE local authorities). 

Year Annual Temperature (°C) Annual Precipitation (mm) 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 

2021 3.3461 3.6177 549.3286 504.8401 

2050 4.7025 4.6543 531.9492 555.1953 

2080 5.5501 7.1875 514.6369 580.7997 

 

Using RCP8.5, variable projection for seasonal temperature, precipitation, wind speed, and 

humidity were also calculated. In the year 2050, it is predicted that the precipitation average will 

decrease by 42.5%, temperature average will increase by 33.7%, humidity average will increase 

by 17.0%, and wind speed will decrease by 15.3%. Between 2050 and 2080, seasonal precipitation 

average will increase by 11.7%, seasonal temperature average will increase by an additional 8.5%, 

seasonal humidity average will increase by another 5%, and seasonal wind speed average will 

increase by 7.9%. Table 6 shows the seasonal temperature, precipitation, wind speed and humidity 

values for RCP8.5. 

Table 6 The seasonal temperature, precipitation, wind speed and humidity variables projection for 
RCP8.5 (source: University of Regina). 

Year Precipitation (mm) Temperature (°C) Humidity (g.kg-1) Wind speed (mph) 

2021 319.9265 11.1082 0.00589 5.2817 

2050 183.9414 14.8572 0.00689 4.4760 

2080 205.4308 16.1197 0.00723 4.8283 

 

Climate projections for 2050 and 2080 were calculated using Equation 4 and are depicted 

in Figure 4-5. These climate changes will play a significant role in increasing fire ignition, hence, 

will drastically increase overall fire risk. The class classification of the climate raster maps has 

equal intervals for all risk factors. For instance, Very Low is defined between 0.546 and 0.5847, 

Low is between 0.5847 and 0.6229, Moderate is between 0.6229 and 0.661, High is between 

0.6611 and 0. 6993, and Very High is between 0.6993 and 0.74; every single class above has an 

interval of 0.0382. 
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Figure 4-4 Climate variables for 2021 and predictions for 2050 and 2080 based on RCP8.5 data. 
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Figure 4-5 The wildfire risk in relation to climate projections for the CoE. 

4.4. Summary 

A reliable fire risk model requires abundant and accurate data. However, integrating an 

overabundance of data into a single model can cause it to overcomplex. Hence, one should only 

select the most effective variables and/or factors that contribute to the model assessment. In this 

report, the fire risk model is constructed based on 4 criteria containing a total of 12 variables that 

represent the urban setting and the environment of the CoE. The model building process consisted 

of procuring all the high-resolution datasets, feature engineering, and thorough data analysis. The 

result was a high-resolution fire risk map. Once the fire risk map had been constructed, weight 

assignments were performed in accordance with AHP such that expert opinions could be 

incorporated in the suggested weights.  

 Climate predictions and forecasts were based on two climate datasets, RCP4.5 and RCP8.5 

datasets for 3 separate years, 2021, 2050, and 2080. The two datasets were then integrated to 

forecast the climatic conditions, which are expected to drastically change and cause an increase in 

risk of wildfire in the City as time progresses.  
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5. Results & Discussion 
Section 5 focuses on the fire-risk assessment maps generated via the fire-risk assessment model. 

There are 6 subsections in this section. The first subsection discusses the 2021 fire risk assessment 

map while the second subsection discusses and compares forecasted fire risk assessment maps for 

2050 and 2080 that were generated using the RCP8.5 dataset. The third subsection explains the 

ecological vulnerability classification method as well as its contributions to this research. The 

fourth subsection outlines the shared responsibilities between stakeholders for fire prevention and 

mitigation, whereas the fifth subsection highlights the key pillars of strategic planning and action 

to zone resiliency. The final subsection provides a summary of the important points discussed in 

this section. 

 
5.1. The Fire-Risk Map For 2021 

The 2021 fire-risk map was classified into five categories with equal intervals that range from 

0.300 to 0.723: Very low, Low, Moderate, High, and Very High. Risks maps were first generated 

for each of the 12 variables, and then combined to form the final risk map. These maps are shown 

in Figure 5-1 and Figure 5-2, respectively. In terms of the different risk levels, the very high-risk 

class is observed to contain mostly coniferous and black spruce trees, species known to have the 

highest flammability in Edmonton. Furthermore, this category also contains the river valley area, 

mainly because of its low elevation and high slope angle around its edges, both of which are factors 

known to increase fire risk. Very high risk also encompasses the center, north, and north-east parts 

of Edmonton as a result of temperature and precipitation as shown in Figure 5-1.  

During the fire season, these open-vegetated areas in Edmonton are exposed to higher 

levels of human activity, such as camping, that can result in unintentional fires. Although these 

areas are close to a waterbody, their proximity to water had no impact in attenuating fire risk. This 

is because during most of the fire season, other variables have much larger weights, effectively 

nullifying the proximity to water factor. The next highest risk category is high-risk. This category 

is characterized by the forest type trembling aspen trees. One thing to note is that in both very 

high-risk and high-risk are green areas and parks where human activities are most likely to occur, 

leading to higher probability of fire ignition and ramification. The next category representing 

moderate-risk contains white spruce, the balsam poplar, and various other deciduous trees, of 

which are all regarded as less-flammable species. The second lowest risk class, the low-risk 
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category contains agricultural area south-west of Edmonton. And finally, the very low-risk 

category holds majority of the buildings and residential areas. 

 
Figure 5-1 Risk map for all the 12 variables used for fire-risk assessment. 
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Figure 5-2 The fire-risk map for 2021. 

 
 

5.2. The Fire-Risk Maps for 2050 and 2080 

By projecting fire-risk into horizon years, it is possible to determine which zones are the most 

impacted by climate change. And thus, climate projections were done for 2050 and 2080 using the 

climatic RCP8.5 data as depicted in Figure 5-3. It can be observed in Figure 5-3(a) that by 2050, 

west and south regions’ fire risk will increase by 14-19.7%. And within the central regions, risk 

will increase by 12-14.4%. Figure 5-3( (b) also suggests that by 2080, the northwest and east zones 

will have their fire potential increase by 7.2-10.4%, and the south regions will experience moderate 

fire risk increase of 1.7-4.3%. Contrary to the above two mentioned zones, the northeast zones will 

actually have lower fire risk; their fire potential is forecasted to decrease by up to 5.48% due to 

the projected climate changes.  

The forecasted fire-risk maps for 2050 and for 2080 using the climate RCP8.5 data are 

shown in Figure 5-4(a) and in Figure 5-4(b), respectively. The climate projection maps indicate a 

higher level of risk, with Very low and Low risk areas becoming Moderate and High risk areas. 
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Figure 5-3 Risk rate of changes on the CoE (a) from 2021 to 2050, and (b) from 2050 to 2080. 

 
Figure 5-4 Forecasted fire-risk map for CoE for (a) 2050, and (b) 2080 using climate RCP8.5 

data. 
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5.3. Vulnerability Classification 

The five risk categories shown earlier in Figure 5-2 can be further grouped into three types of 

regulatory zones: ecological green line areas, ecological grey line areas and ecological red line 

areas (Zhang, 2015), as depicted in Figure 5-5. 

 The ecological green line areas include the very-low- and low-risk areas in CoE. From the 

perspective of sustainable development and zoning regulations, the ecological green line areas are 

abundant in residential buildings, natural resources, and recreational areas, which makes these 

regions the most livable for residents (Zhang, 2015). Most of the green areas in CoE are urban 

developed and residential areas located near city center. 

 The ecological grey line areas comprise of moderate-risk regions found between the red 

and the green line areas. The grey line area can aid various ways in city development. For instance, 

if a city pursues sprawling development, grey line can offer adequate space as back-up for urban 

development; whereas if a city desires a shrinkage protection strategy, grey area can act as the 

ecological safeguard zone to protect the environment from forthcoming urban development 

(Zhang, 2015). In terms of CoE, grey line areas are often developed agricultural areas, found 

mainly in the south-east and south-west areas just outside the City. 

 The ecological red line areas comprise of high- and very-high-risk areas with rich natural 

and vegetation resources. These areas are ecologically preserved and cannot be used for urban 

development or industrialization purposes. These areas serve to promote sustainable development 

and natural heritage (Zhang, 2015). Within CoE, all forested and natural lake areas are red line 

areas. 

It is worthwhile noting that the above-mentioned ecological lines are not fixed but can easily be 

adjusted to other classification ranges within ArcGIS, thereby increasing the model transferability 

potential. 
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Figure 5-5 The regulatory zone of ecological lines of the City of Edmonton. 

 

 The classification of the ecological green line areas in the CoE was through grouping the 

very-low and low-risk areas, of the ecological grey line areas as the moderate-risk areas, and of 

the ecological red line areas through grouping the high- and very-high-risk areas. This 

classification approach was determined throughout the literature which followed the same 

approach. It is advisable that city planners and experts have the tools adjusted properly in ArcGIS 

to set the classification ranges and properties suitable to the situation regarding CoE. 

 

5.4. Responsibility Identification 

Residents, homeowners, fire departments, and the government all share responsibility in 

developing a climate-resilient city. For instance, the government is responsible for firefighting 

while homeowners handle fire prevention. Together they function as cogs in a machine, all 

indispensable, and if one cog fails to perform, the whole system fails. 

 The government has the duty to provide information about protection measures and the 

dangers associated with fire. Additionally, the government also has to develop a well thought out 
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fire management plan by considering the risk of fire and its associated impacts. During the 

developmental process, it is essential to have a strong fire-risk management system as reference, 

as it plays an additional role in zoning and building codes that function as active preventions. The 

fire guidelines engrained in these codes to maintain city resiliency before, during, and after a fire 

occurrence. This is ultimately the goal of any major municipality to becoming a climate-resilient 

city. 

But for these roles to work, homeowners first need to be responsible and fire conscious. 

The responsibility of homeowners can be summarized into: (1) being cautious with fire, and (2) 

protecting their private property from wildland fire damage. First, homeowners must be careful 

with fire in their private property. For instance, garbage present around the houses is one of the 

biggest culprits for grass fires, which may eventually result in a house fire that later becomes a 

neighborhood fire. Therefore, a homeowner must keep their property void of any easily flammable 

material. Secondly, they must educate themselves on and practice fire-risk prevention. These are 

things like spraying fire retardant and trimming flora around their property to reduce the 

probability of fire ignition occurrence.  

5.5. Fire-Risk Management to Climate Resiliency 

Three points can be concluded from the 2021, 2050, and 2080 fire-risk maps, of which were 

obtained as outputs from the fire-risk model. First, there are currently high-risk areas in the north 

and south direction in CoE, as shown in Figure 5-6(a). Secondly, as demonstrated in Figure 5-6(b), 

there will eventually be a high-risk area in the east and west direction as well a minor risk region 

in the south. Lastly, higher risk regions will be created in the west, east and south directions, as 

shown in Figure 5-6(c).  

As mentioned before, fire-risk raster maps can be further converted into regulatory zones. 

The green and grey ecological areas are considered the areas of focus for fire prevention, as 

depicted in Figure 5-7. Green areas are sustainable and grey areas are expandable. Findings 

therefore suggest that it is essential to consider more fire-risk management processes as well as 

zoning and building regulations to implement in the initial steps toward climate resiliency.  
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Figure 5-6 All fire-risk raster maps for 2021, 2050 and 2080, associated with the delta map for 

the corresponding forecasted year. 

 
Figure 5-7 The fire-risk assessment raster map along with the vulnerability classification raster 

map for the CoE. 
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Figure 5-8 Four fundamental cornerstones for strategic planning and 

policy regulations, (adopted from Brugmann, 2014). 

 

The Resilience Zone approach, shown in Figure 5-8, centers around strategic planning and 

the establishment of a market foundation for climate adaptation. Such approach comprises of four 

cornerstones. The first two cornerstones serve to reinforce risk management and sustained 

insurability. The successive two cornerstones aim at attracting investment, and to communicate 

resilience benefits to preserve and enhance Resilient Zone value (Brugmann, 2014).  

5.5.1. Cornerstone #1: Asset-Focused Risk Management 
 
The first step in building a resilient city is defining the fire risk hazards present. For this reason, 

local stakeholders and their partners in government, insurance and utility companies, and other 

relevant industry sectors should work collaboratively to discover the dangers present. And through 

policies, building standards, and risk education, the discovered risks can be managed and mitigated 

(Brugmann, 2014). Hence, this cornerstone focuses on motivating and supporting homeowners 

and infrastructure providers to manage climate risks on their own.  

Cornerstone #1: Asset 
Focused Risk 
Management

Develop mechanisms to 
support household and 
enterprise level action.

Cornerstone #2: Local 
Area Risk Management

Develop mechanisms for 
risk management & 

transfer at the local area 
scale.

Cornerstone #3: 
Resilience Upgrading of 

The Designated Area

Design risk reduction 
measures to enhance 
current performance 

and benefits.

Cornerstone #4: 
Communicating 

Resilience Benefits

Ensure understanding of 
benefits and effective 

use of the new 
‘Resilience zone’.
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The aim is to identify measures that altogether could establish market dynamics that better 

influence climate-related risks into the risk management of individual assets and businesses 

(Brugmann, 2014). One great example of this is building codes. By integrating fire prevention 

method into building guidelines, property owners are effectively incorporated into the fire risk 

management process. For homeowners, they have to consider hardening of homes, reducing 

distance between homes and wildlands, and increasing brush clearance, thereby transitioning some 

of the responsibility from governmental agencies to homeowners. 

5.5.2. Cornerstone #2: Local Area Risk Management 
 
The urban-setting risk management is confined to homeowners and assets, single organizations, 

and enterprises. Even if homeowners and businesses manage their business and asset risks 

efficiently, they are still exposed to higher scaled risks, like fire risks at a district, neighborhood, 

or corridor level. Residents and businesses may also not afford to bear with risks on that scale. 

Hence, asset owners and stakeholders in high climate vulnerability zones must create mechanisms 

for collaborative risk management specific to the area (Brugmann, 2014). One mechanism may be 

the establishment of an institution that is accountable for risk management at the local area level. 

This entity may collaborate with insurance providers to develop tailored risk transfer resolutions 

for its unique exposures.  

Local Area Risk Management emphasizes risk management and vulnerability reduction to 

develop current primacies at a zonal level. It aims to clarify the separation between current risk 

management priorities regarding businesses and assets and the needed requirements for longer 

term climate resilience (Brugmann, 2014). 

5.5.3. Cornerstone #3: Resilience Upgrading of the Designated Area 
 
Improved safety is not risk managements’ only benefits but it also has the potential to improve the 

attractiveness of the area, and by doing so, add value to the land and attract investments. For 

instance, the City of Curitiba, Brazil significantly reduced their flooding crises through voluntary 

home relocation by its residents, followed by a general system expansion and development of 

riverside parks, cycling trails, catchment ponds, and sports fields. These expansion and 

development efforts have made Curitiba one of the most livable and attractive residential and 

business locations on the continent (Brugmann, 2014).  
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With the support of creative design and business innovation, the adaptation process to 

climate change may theoretically be pursued as a redevelopment/investment opportunity that 

yields financial returns. Investments that create local resilience may produce a performance 

premium for homeowners and public entities from increased property values, rental, tax, and 

service revenues (Brugmann, 2014). 

5.5.4. Cornerstone #4: Communicating Resilience Benefits.  
 
Once risk in a vulnerable area has been reduced and transferred, and the development of the 

Resilience Zone underway, the advantages of the local area may be documented and 

communicated to create market demand, increasing the potential for a ‘resilience premium’. 

Hence, there must be an effective communication strategy, possibly through benchmarking and 

key performance indicators (KPIs) that clearly demonstrate the benefits of a resilient area 

(Brugmann, 2014). 

For instance, the evolution of “green building” practice advocates the value of such a 

method. ‘Green building’ was a new type of urban development performance that could have 

simply wound up as marketing. However, it became a conventional performance measure in the 

building industry because it was identifiable by a broadly acknowledged standard; LEED. The 

U.S. Green Building Council and LEED showed how market recognition of enhanced performance 

relies on communication measures. Good communication made LEED rated structures 

recognizable for their efficient energy performance, successfully creating an interest in building 

project owners to make their own buildings LEED rates. This has gained them recognition, while 

at the same time, contributes to city resilience (Brugmann, 2014). Using green building as 

reference, cities that choose to lead the founding of market support for climate adaptation should 

therefore develop a communication strategy in a similar manner.  

5.6. Summary 

From the developed model, a series of wildfire risk maps were generated that separates CoE into 

different risk categories. The very high-risk areas were identified as the priority areas for fire-risk 

management. These regions should be the focus of fire-risk mitigation and prevention strategies. 

Furthermore, forecasted fire-risk maps were generated to help city officials and decision makers 

make effective long-term fire-risk management plans. 
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The risk categories from the wildfire risk map were then converted into three ecological 

categories; green, grey, and red line areas. Green line regions represent development areas, grey 

line areas represent ecological buffer zones, and red line areas represent preservation areas. 

Combining the fire-risk assessment raster map with the vulnerability classification raster map can 

help municipal authorities and decision-makers fully understand the associated fire risk in a 

specific zone, allowing them to plan and execute effective fire risk management strategies in the 

event of a fire outbreak. 

 A priority for fire-risk management is to understand the duties involved and distribute them 

among the stakeholders. Every stakeholder must have a clear understanding of their 

responsibilities and how they can fulfill them. For example, the government and homeowners share 

responsibility for fire-risk mitigation and prevention, and as a result, it is crucial to identify and 

clarify the roles involved. 

 Ultimately, the goal of this report is to provide a foundation for building a climate resilient 

city. Hence, the last subsection focused on four strategic planning and action cornerstones for 

establishing a market framework for climate adaption. The first two cornerstones, which are asset-

focused risk management and local area risk management, improve risk management and ensure 

insurability. The subsequent two cornerstones, which are resilience upgrading and communicating 

resilience benefits, help high-risk zones attract investment and convey resilience benefits as a 

means of maintaining and even increasing value in the resilient zones. These four cornerstones 

would combine to achieve higher levels of compliance to climate resiliency. This is not a full 

roadmap to climate resiliency, but it could be essential in terms of decision making for evacuation 

response and emergency planning. 
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6. Conclusion & Future Work 
The frequency of wildfire events has increased dramatically over the past decade in Western 

Canada whereby making cities like the City of Edmonton (CoE) with large stretches of green space 

more concerned over the possibility of wildfires occurring near its limits. To combat this growing 

concern, data from the CoE were used to construct a fire risk assessment model. The model 

proposed and developed herein is unique in that it adopts a multitude of large-scale and high-

resolution geospatial and remotely sensed data to assess both current and future fire-risk scenarios. 

The following sections summarize the key findings and contributions of this report along with 

limitations and recommendations for future research. This report covered three major objectives 

as summarized below. 

First, an extensive and thorough literature review was completed to cover a wide range of 

topics on fire-risk modeling, planning, management, and mitigation. The extensive review 

revealed the differences between spatial and non-spatial, parametric and non-parametric modeling 

techniques, and urban and rural risk models. In addition, it was also found that fire-risk assessment 

was an essential step in fire-risk management that includes zoning and regulations to help maintain 

climate resiliency. In terms of modelling, a brief background was introduced to show the 

importance of building a city-specific fire-risk model as it will serve as a steppingstone to assist 

city planners and managers with developing a comprehensive emergency response and evacuation 

plan.  

Secondly, a novel fire-risk mapping method was proposed using a parametric linear 

combination of state-of-the-art datasets reinforced by an AHP application. When developing the 

model, only the most essential aspects were considered, such as meteorological, topographical, 

biological, and anthropogenic parameters. The proposed method divided risk areas into five 

classes, from very low to very high. Factors and variables were selected based on previous 

literature findings.  For the purposed of assigning weights to variables using AHP, experts from 

the CoE were consulted to tailor the weight for an urban setting. Moreover, projection fire-risk 

maps were produced for the years 2050 and 2080 using the climate projections datasets; more 

specifically, RCP4.5 and RCP8.5. Project risk maps showed fire risk increase in many regions 

from increase in average seasonal temperature and wind speed and decrease in average seasonal 

precipitation and humidity. 
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Finally, fire-risk assessment was further processed to identify methods of accomplishing 

two tasks: 1) how to adapt to increased  wildfire risk and 2) how to achieve higher levels of 

compliance to climate resiliency. The ecological vulnerability classification map was then 

constructed to define three different levels of vulnerability: (1) green line areas that can be 

extensively developed, (2) grey line areas that can serve as an ecological buffer zone; and (3) red 

line areas that cannot be developed and must be preserved. In order to achieve city resilience, it is 

crucial to have a well thought out fire risk management plan, where each stakeholder has particular 

duties that, when combined, can lead to greater fire risk management and prevention. To guide the 

development of a proper fire risk management plan, four strategic planning and action cornerstones 

were proposed. This system works by highlighting policies and regulations required to attain better 

levels of climate resiliency. The first two cornerstones help with risk management and insurability, 

whereas the remaining two cornerstones focus on how high-risk zones can be modified to attract 

investments, and how communicating resilience benefits can increase resilient zone value. It is 

anticipated that these four cornerstones would help achieve higher levels of climate resiliency 

compliance. 

Two major future bodies of work should be considered so that it may contribute to this 

research and could potentially provide researchers a better understanding for their development of 

evacuation plans and emergency responses. First, traffic network analysis and street connectivity 

are major factors for the CoE to investigate to help simulate and set an evacuation plan in case of 

fire occurrences. Street connectivity measures the density of network links and the directness of 

paths. A well-connected street has many short links and intersections, with little to no culs-de-sacs. 

Travel distances decrease in a network with more capacity, shorter paths exist between each origin 

and destination, and more destinations become available within the allocated time budget. It also 

increases the feasibility of active transportation modes and decreases the time required for 

emergency responders to respond. Street connectivity is an essential characteristic of sustainable 

cities. People must be able to move safely and efficiently across the City. Such an ecosystem is 

created by a sustainable street network, which allows for a variety of transportation modes and 

routes. Connections between modes of transportation must be simple and convenient. Routes must 

be clear and secure in case of any emergency or evacuation (Zlatkovic, 2019).  

Second, given the fire-risk map, high-risk zones and areas which need more attention can 

be easily identified. Combustibility analysis for the urban setting differs significantly from the 
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rural setting. Hence, further building and zoning regulation and investigation can be compiled to 

increase resiliency and awareness. Other factors and variables would need to be explored in depth 

to decide how it is contributing to fire and if it is required to be included in the model. These 

variables might include, but not limited to, openings, collapsed buildings, flame brands, direct 

flame contact, emitted radiation through fuel, fire temperature and compartment properties, and 

radiative heat transfer. Also, some field work and ground truthing can be the next steps to verify 

the fire risk levels in the field given the high-risk areas. This further investigation point can be of 

an essential investigation in the future if there must be microanalysis for fire-risk assessment. This 

might also give insights to better zoning and building regulations in high-risk areas; hence, better 

fire-risk management and mitigation strategies will be implemented.  
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