TABLE OF CONTENTS | 1. | Issue Identification | PG 3 | |----|---|-------| | 2. | Mitigation and Adaptation Differences | PG 5 | | 3. | Intersection of Mitigation and Adaptation | PG 5 | | 4. | Analysis | PG 8 | | 5. | Conclusions and Recommendations | PG 15 | ## **ISSUE IDENTIFICATION** On August 27th, 2019, Edmonton City Council Declared a Climate Emergency and requested that Administration take steps to develop a revised Community Energy Transition Strategy by the end of third Quarter 2020 that aligns the emissions targets and actions with the local carbon budget for City Council's approval. Council's motion was informed by Administration's report contextualizing Edmonton's current Community Energy Transition Strategy with a local carbon budget that was developed to assess whether or not the 35% below 2005 levels by 2035 greenhouse gas reduction goal was aligned with a global average temperature increase of 1.5 degrees scenario. The conclusion was that Edmonton was not on track to limit its contribution to global climate change at a level aligned with 1.5 degrees. The report provided to City Council also provided an illustrative pathway to achieve a level of emissions reductions aligned with the 1.5 scenario. The results were summarized within six climate shifts: On August 27th, 2019 Edmonton City Council Declared a Climate Emergency and requested that administration take steps to develop a revised Community Energy Transition Strategy. The shifts include 23 modelled actions that would facilitate the emissions reductions required to stay within the local carbon budget and achieve 3 tonnes of emissions per capita by 2030 and carbon neutrality by 2050. #### **Climate Resilient Edmonton: Adaptation Strategy and Action Plan** Beginning in 2016, the City and various stakeholders worked together to develop a climate change adaptation strategy that investigated the climate change impacts expected to affect Edmonton and how the City can prepare to minimize the negative social, economic, and environmental aspects of those impacts. Climate Resilient Edmonton: Adaptation Strategy and Action Plan was presented to the Executive Committee of City Council in November 2018, and outlines the strategy and actions the City will take to build climate resilience. Addressing both climate adaptation and mitigation is necessary to build the overall climate resilience of the City of Edmonton. It is recognized that different mitigation actions can both help and hinder our ability to adapt to climate change. For example, the shade and cooling provided by trees enhances a city's adaptation capacity, but the shade provided by trees can reduce solar energy capacity and generation. Both actions are necessary to be successful, and each approach must be employed with an eye to the right approach for the right locations. To optimize the City's climate resilience mitigation actions that also increase climate adaptation capacity should be prioritized over those that have no adaptation benefit or reduce the adaptive capacity. Therefore, to optimize the City's climate resilience mitigation actions that also increase climate adaptation capacity should be prioritized over those that have no adaptation benefit or reduce the adaptive capacity. This policy brief explores the currently defined mitigation actions and highlights where these actions can potentially increase or decrease the adaptive capacity of the City, providing an initial prioritization of the mitigation actions that help build overall climate resilience. Figure 1: Definitions of climate mitigation and climate adaptation #### MITIGATION AND ADAPTATION DIFFERENCES It is not sufficient to concentrate on either mitigation or adaptation, but a combination of these results in the most sustainable outcomes. Yet, these two strategies do not always complement each other, and can create conflicts between the specific priorities of mitigation or adaptation. This creates a need for these conflicts to be managed, prioritizing those activities that are cost-effective and minimize negative consequences.¹ Adaptation and mitigation differ primarily based on their overall objectives. Mitigation addresses the causes of climate change, that being the accumulation of greenhouse gas emissions in the atmosphere. Adaptation addresses the impacts of climate change, such as heavier rains, more frequent and / or extreme heat waves, or increasing prevalence of drought. Both approaches are needed to build climate resilience. Even with strong mitigation efforts undertaken the climate will continue to change due to past greenhouse gas releases, and adaptation alone will not be able to eliminate all negative impacts that result from changing climatic conditions. Adaptation and mitigation also differ in terms of where the results of the actions are felt. Reductions in greenhouse gas emissions from mitigation efforts result in benefits that are global in scale, whereas adaptation efforts will mostly generate local benefits. Both remain important, but achieving the right balance of mitigation and adaptation efforts is a challenge and one that must be evaluated location by location. #### INTERSECTION OF MITIGATION AND ADAPTATION Vulnerability to climate change, greenhouse gas emissions, and the capacity to adapt to climate change and mitigate our impact on the climate is strongly influenced by livelihoods, systems, behaviour and culture.² Moving towards an increasingly energy-intensive lifestyle can contribute to higher resource ¹ Laukkonen, Julia; Blanco, Paola Kim; Lenhart, Jennifer; Keiner, Marco; Cavric, Branko; and Kinuthia-Njenga, Cecilia. Combining climate change adaptation and mitigation measures at the local level. Habitat International, Volume 33, Issue 3, July 2009, 287-292. https://doi.org/10.1016/j.habitatint.2008.10.003 ² IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. consumption, driving greater energy production and greenhouse gas emissions. This highlights the importance of adapting our consumption habits to minimize the energy consumed and therefore reduce emissions. Every mitigation action taken helps reduce the adaptation to climate change that is necessary, recognizing that some degree of climate change is already locked in from historical GHG emissions. Vulnerability to climate change, greenhouse gas emissions, and the capacity to adapt to climate change and mitigate our impact on the climate is strongly influenced by livelihoods, systems, behaviour and culture. However, this minimization of energy consumed must also consider the social acceptability and regional conditions present to successfully see these actions adopted. Similarly, livelihoods that depend on climate-sensitive sectors or resources may be particularly vulnerable to climate change and climate change policies. Without considering both mitigation and adaptation, economic development and urbanization of landscapes exposed to climate hazards may increase the risk to a city and reduce the resilience of natural systems that help moderate impacts of climate change. This complexity reveals a need for improving institutions and enhancing coordination and cooperation in governance to help overcome regional constraints associated with mitigation, adaptation and disaster risk reduction. Table 1 explores some common factors that constrain the implementation of adaptation and mitigation actions. Table 1: Common factors constraining the implementation of adaptation and mitigation options³ | Constraining Factor Implications for Adaptation | | Implications for
Mitigation | |---|---|---| | Adverse externalities of population growth and urbanization | Increase exposure of human populations to climate variability and change as well as demands for, and pressures on, natural resources and ecosystem services | Drive economic
growth, energy
demand and energy
consumption,
resulting in increases
in greenhouse gas
emissions | | Deficits of knowledge,
education and human
capital | Reduce national,
institutional and
individual perceptions | Reduce national,
institutional and
individual risk | ³ IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. | | of the risks posed by
climate change as well
as the costs and
benefits of different
adaptation options | perception, willingness to change behavioural patterns and practices and to adopt social and technological innovations to reduce emissions | |---|---|---| | Divergences in social
and cultural attitudes,
values and behaviours | Reduce societal
consensus regarding
climate risk and
therefore demand for
specific adaptation
policies and measures | Influence emission patterns, societal perceptions of the utility of mitigation policies and technologies, and willingness to pursue sustainable behaviours and technologies | | Challenges in
governance and
institutional
arrangements | Reduce the ability to
coordinate adaptation
policies and measures
and to deliver capacity
to plan and
implement adaptation | Undermine policies, incentives and cooperation regarding the development of mitigation policies and the implementation of efficient, carbon-neutral and renewable energy technologies | | Lack of access to
national and
international climate
finance | Reduces the scale of investment in adaptation policies and measures and therefore their effectiveness | Reduces the capacity of developed and developing nations to pursue policies and technologies that reduce emissions | | Inadequate
technology | Reduces the range of available adaptation options as well as their effectiveness in reducing or avoiding risk from increasing rates or magnitudes of climate change | Slows the rate at which society can reduce the carbon intensity of energy services and transition toward low-carbon and carbon-neutral technologies | | Insufficient quality
and/or quantity of
natural resources | Reduce the ability to
adapt, vulnerability to
pre-existing
non-climatic factors
and potential
competition for
resources that | Reduce the long-term
sustainability of
different energy
technologies | | | enhances vulnerability | | |-------------------------------------|---|--| | Adaptation and development deficits | Increase vulnerability
to current climate
variability as well as
future climate change | Reduce mitigative capacity and undermine international cooperative efforts on climate owing to a contentious legacy of cooperation on development | | Inequality | Places the impacts of climate change and the burden of adaptation disproportionately on the most vulnerable and/or transfers them to future generations | Constrains the ability for developing nations with low income levels, or different communities or sectors within nations, to contribute to greenhouse gas mitigation | ## **ANALYSIS** Table 2 explores the identified actions under the 6 Climate Shifts of the updated Community Energy Transition Strategy, and generally evaluates these actions for their contribution to climate adaptation. Specific details underlying each of the actions have a considerable implication for the contribution to climate adaptation, and it is possible that programs can eliminate a negative contribution to climate adaptation if adaptation is considered in their design and implementation. This table should be considered an initial evaluation of potential implications for the City's adaptive capacity as the Energy Transition is implemented. Those actions with little or no contribution to climate adaptation should consider and reduce the potential negative consequences for climate adaptation in their design and implementation. Actions with a positive contribution to climate adaptation should be streamlined and prioritized to maximize the climate resilience of Edmonton. Table 2: Community Energy Transition Actions and their Potential Contribution to Climate Adaptation | Climate Shift | Action | Contribution
to Climate
Adaptation* | Notes | |---|--|---|---| | Climate Shift 1:
Tools and
Targets | Carbon
Accounting and
Budgeting | 0 | Helps to understand the City's contribution to climate change, but does not improve knowledge about the risks and impacts due to climate change | | | Consumption
based GHG
Inventory | 0 | Increased understanding of the implications of City purchasing and how to adapt purchasing to minimize the City's contribution to climate change | | Climate Shift 2:
Low Carbon City
& Zero Emissions
Transportation | Building and
Land Use
Intensification /
Densification | + | Improves local-access to necessary goods and services, reducing need for transportation. Improved connectedness within community Reduced disruption of natural ecosystems that assist adaptation In the absence of proper emergency preparation, if intensification / densification occurs in a high climate risk location (i.e. fire / flood) and an event occurs adaptation may be hindered. | | Increased Active
Transportation | ++ | Increases awareness of local climatic conditions and hazards. Increased health and wellbeing of residents Provides additional transportation options / redundancy in transportation system during emergency events | |--|----|---| | Increased Public
Transportation | ++ | Provides additional lower cost transportation options / redundancy in transportation system Can be utilized as emergency transportation for large populations in the event of evacuations or other major climatic events Promotes connectedness among residents | | Increased use of
Alternative
Transportation
Fuels | 0 | Allows for lower impact use of current vehicle stock. Facilitates redundancy / diversification of fuel supply | | Increased use of
Electric Vehicles | 0 | Facilitates redundancy / diversification of fuel supply. EV's can potentially be utilized as | | | | | back-up batteries in
emergency
situations
Potentially provide
additional stability / | |--|---|----|---| | | | | resilience of
distribution grid if
integrated ⁴ | | Climate Shift 3:
Emissions
Neutral Buildings | New Buildings
are Emissions
Neutral | ++ | Improved air tightness reduces wildfire smoke penetration, providing additional protections during wildfire smoke events. | | | | | Improved insulation
moderates internal
temperatures
during extreme
heat / cold events | | | | | Reduces the
financial risk of
fluctuating fossil
fuel costs and
escalating carbon
costs | | | Retrofitting
Existing
Buildings to be
Emissions
Neutral | ++ | Increases
robustness of
current building
stock | | | | | Improved air
tightness reduces
smoke penetration. | | | | | Improved insulation
moderates internal
temperatures
during extreme
heat / cold events | | | | | Reduces the
financial risk of
fluctuating fossil
fuel costs and | _ ⁴ National Renewable Energy Laboratory, Multi-Lab EV Smart Grid Integration Requirements Study: Providing Guidance on Technology Development and Demonstration, May 2015. https://www.nrel.gov/docs/fy15osti/63963.pdf | | | | escalating carbon
costs | |---|--|----|---| | | Home Energy
Labelling | 0 | Provides awareness
of the risk of
fluctuating fossil
fuel costs and
escalating carbon
costs when making
home purchases or
rental decisions | | | | | Could align with
climate risk
labelling / resilience
(i.e. labelling of
flood / fire risk of
properties) | | | Improving
Industrial
Efficiency | 0 | Industrial operations can remain competitive despite fluctuating fossil fuel costs and escalating carbon costs | | Climate Shift 4:
Renewable
Revolution | Increased use of
Solar PV | ++ | Increased electrical generation redundancy / distributed generation increasing grid resilience | | | | | Potential reduction
in urban heat island
effect / internal
heating and cooling
load from panel
shading ⁵ | | | Increased use of
Renewable
Natural Gas and
Hydrogen | 0 | Facilitates
redundancy /
diversification of
fuel supply | | | | | Facilitates
continued use of
current heating
systems while | _ ⁵ Masson Valéry, Bonhomme Marion, Salagnac Jean-Luc, Briottet Xavier, Lemonsu Aude; Solar panels reduce both global warming and urban heat island. Frontiers in Environmental Science. Volume 2, 2014. https://www.frontiersin.org/article/10.3389/fenvs.2014.00014 | | | | reducing
greenhouse gas
emissions | |---|---|----|---| | | Increased use of
District Energy | + | Increased electrical generation redundancy / distributed generation increasing grid resilience | | | | | Increased energy efficiency, reducing financial risk of fluctuating fossil fuel costs and escalating carbon costs | | | Increased use of
Electric Heat
Pumps (air
source and
geoexchange) | 0 | Facilitates
diversification of
fuel supply. | | | Reduction /
Utilization of
Waste | + | Facilitates
redundancy /
diversification of
fuel supply | | | | | Waste utilization
facilitates
development of
circular economy,
improving local
resilience | | | Increased use of
Energy Storage | ++ | Can provide emergency power during climatic events that disrupt the electrical system, improving grid stability | | Climate Shift 5:
Just and
Equitable
Transition | Energy Efficient
Affordable
Housing | ++ | Reduces exposure to fluctuating fossil fuel costs and escalating carbon costs for vulnerable populations who are disproportionately impacted by climate | | | | | change | |---|---|----|--| | | | | Facilitates inclusiveness within the energy transition; a major pillar of adaptation | | | Reducing Energy
Poverty | + | Improves the ability and capacity of vulnerable populations to protect themselves during climatic events | | | Increasing
Access to Green
Jobs | ++ | Improves the ability
and capacity of
people to protect
themselves during
climatic events | | | | | Improves economic resilience | | | | | Facilitates
diversification of
the economy | | Climate Shift 6:
Negative
Emissions | Increasing /
Maximizing
Natural Carbon
Sinks | ++ | Natural carbon sinks reduce the urban heat island effect, filter stormwater, and improve air quality assisting in adapting to climate change | | | Negative
Emissions
Technology | 0 | Adaptation can be facilitated if deployed on carbon streams that cannot be replaced with renewable technology. | | | | | Technology is novel,
and must be
developed and
researched further
to determine
contribution to
adaptation | | Use of Carbon
Offset Credits | 0 | Can facilitate continued use of fossil fuels and detract from a shift towards renewable technology options. The type of offset used will determine how it contributes to adaptation (i.e. natural-based carbon offsets provide a larger contribution to adaptation than offsets for industrial | |---------------------------------|---|---| | | | efficiency) | ^{* ():} Unclear contribution to adaptation ### CONCLUSIONS AND RECOMMENDATIONS The interactions between climate mitigation and adaptation are complex, and there are no simple rules to follow to ensure that a mitigation action does not hamper our ability to adapt to climate change. Mitigation actions must be evaluated individually to ensure that they do not result in negative consequences in our ability to adapt to climate change, and weaken our climate resilience overall. Mitigation actions that have the potential to reduce adaptability can be designed and implemented to reduce or eliminate those negative consequences, and a potential negative consequence for our ability to adapt should not alone be a reason to abandon potential mitigation actions. It will require focused attention on potential negative consequences and good design and development practices of mitigation programs to be successful at building climate resilience. This will require developing these programs with consideration of the local livelihoods, systems, behaviours and culture to ensure that actions are adopted and effective; ultimately leading to growth in Edmonton's climate resilience. ^{+:} Some potential for negative consequences to adaptation ^{++ :} Little to no known negative consequences to adaptation To continue to enhance the City's climate resilience, both in regards to mitigating climate change and adapting to climate change the following actions are recommended: - 1. Develop and apply a 'Climate Resilience' evaluation to be included in all council reports to identify the impact of Council decisions on the City's mitigation and adaptation capacity. - 2. Consider the impacts of climate change on mitigation actions, and where possible design / develop methods to reduce negative consequences. - 3. Rely on the expertise and advice of the Energy Transition Climate Resilience Committee to provide holistic advice on mitigation actions and the impact of climate change on these actions. - 4. Explore and prioritize those mitigation actions that have significant co-benefits for climate adaptation and building climate resilience.